IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i23p7074-7090.html
   My bibliography  Save this article

Design and administration of collaborative networked headquarters

Author

Listed:
  • Mohsen Moghaddam
  • Shimon Y. Nof
  • Ehud Menipaz

Abstract

Regional headquarters (RHs) lead regionally serving subsidiaries responsible for organising geographically dispersed manufacturing and/or service operations in their respective regional subsidiaries (RSs), with certain levels of autonomy and decision-making authority. RHs have recently attracted greater attention, as a major investment of decentralised manufacturing and service operations. The goal of this work is thus to develop a comprehensive framework to enable optimal design and administration of interconnected, collaborative, and networked manufacturing and service systems. The decisions include optimal design of (1) RH networks based on multiple indicators, and (2) collaboration mechanisms between the RHs. Cyber-supported communication technologies enable the RHs to collaboratively process their electronic tasks (e-Tasks), such that the overall service level, resource utilisation and stability are improved. A bi-objective mixed integer programming model is developed for modelling the RH network design and administration problem. Data envelopment analysis is applied for combining multiple RH network design indicators into unified preference scores. Due to the computational complexity of the problem, a memetic algorithm is developed with a local search mechanism for making task sharing decisions. Several numerical experiments are conducted to illustrate, analyse and highlight the unique features and implications of the developed methodology.

Suggested Citation

  • Mohsen Moghaddam & Shimon Y. Nof & Ehud Menipaz, 2016. "Design and administration of collaborative networked headquarters," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7074-7090, December.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7074-7090
    DOI: 10.1080/00207543.2015.1125544
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1125544
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1125544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    3. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    4. Moghaddam, Mohsen & Nof, Shimon Y., 2014. "Combined demand and capacity sharing with best matching decisions in enterprise collaboration," International Journal of Production Economics, Elsevier, vol. 148(C), pages 93-109.
    5. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    6. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Measurement of Returns to Scale and Damages to Scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs?," European Journal of Operational Research, Elsevier, vol. 211(1), pages 76-89, May.
    8. Chen, Chung-Jen & Hsiao, Yung-Chang, 2013. "The endogenous role of location choice in product innovations," Journal of World Business, Elsevier, vol. 48(3), pages 360-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    2. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    3. Jimenez, Charlotte & Dauzère-Pérès, Stéphane & Feuillebois, Christian & Pauly, Eric, 2013. "Optimizing the positioning and technological choices of RFID elements for aircraft part identification," European Journal of Operational Research, Elsevier, vol. 227(2), pages 350-357.
    4. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    5. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    6. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    7. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    8. Kidd, Martin P. & Darvish, Maryam & Coelho, Leandro C. & Gendron, Bernard, 2024. "A relax-and-restrict matheuristic for supply chain network design with facility location and customer due date flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    9. Mittal, Neha & Boile, Maria & Baveja, Alok & Theofanis, Sotiris, 2013. "Determining optimal inland-empty-container depot locations under stochastic demand," Research in Transportation Economics, Elsevier, vol. 42(1), pages 50-60.
    10. Gross, Wendelin & Butz, Christian, 2014. "Design of Sustainable Transportation Networks," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 137-160, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Feng, Cheng-Min & Wu, Pei-Ju & Chia, Kai-Chieh, 2010. "A hybrid fuzzy integral decision-making model for locating manufacturing centers in China: A case study," European Journal of Operational Research, Elsevier, vol. 200(1), pages 63-73, January.
    12. Jakubovskis, Aldis, 2017. "Flexible production resources and capacity utilization rates: A robust optimization perspective," International Journal of Production Economics, Elsevier, vol. 189(C), pages 77-85.
    13. Youssef Boulaksil & M. Jaafar Belkora, 2017. "Distribution Strategies Toward Nanostores in Emerging Markets: The Valencia Case," Interfaces, INFORMS, vol. 47(6), pages 505-517, December.
    14. de Keizer, Marlies & Akkerman, Renzo & Grunow, Martin & Bloemhof, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2017. "Logistics network design for perishable products with heterogeneous quality decay," European Journal of Operational Research, Elsevier, vol. 262(2), pages 535-549.
    15. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    16. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    17. Gustavo Rodrigues de Morais & Yuri Clements Daglia Calil & Gabriel Faria de Oliveira & Rodney Rezende Saldanha & Carlos Andrey Maia, 2023. "A Sustainable Location Model of Transshipment Terminals Applied to the Expansion Strategies of the Soybean Intermodal Transport Network in the State of Mato Grosso, Brazil," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    18. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    19. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    20. Conrado V. Plaza & Vanessa de A. Guimarães & Glaydston Ribeiro & Laura Bahiense, 2020. "Economic and environmental location of logistics integration centers: the Brazilian soybean transportation case," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 749-771, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:23:p:7074-7090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.