IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i7p2202-2224.html
   My bibliography  Save this article

Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods

Author

Listed:
  • Mehrdad Mohammadi
  • Ali Siadat
  • Jean-Yves Dantan
  • Reza Tavakkoli-Moghaddam

Abstract

This study develops a new optimisation framework for process inspection planning of a manufacturing system with multiple quality characteristics, in which the proposed framework is based on a mixed-integer mathematical programming (MILP) model. Due to the stochastic nature of production processes and since their production processes are sensitive to manufacturing variations; a proportion of products do not conform the design specifications. A common source of these variations is maladjustment of each operation that leads to a higher number of scraps. Therefore, uncertainty in maladjustment is taken into account in this study. A twofold decision is made on the subject that which quality characteristic needs what kind of inspection, and the time this inspection should be performed. To cope with the introduced uncertainty, two robust optimisation methods are developed based on Taguchi and Monte Carlo methods. Furthermore, a genetic algorithm is applied to the problem to obtain near-optimal solutions. To validate the proposed model and solution approach, several numerical experiments are done on a real industrial case. Finally, the conclusion is provided.

Suggested Citation

  • Mehrdad Mohammadi & Ali Siadat & Jean-Yves Dantan & Reza Tavakkoli-Moghaddam, 2015. "Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods," International Journal of Production Research, Taylor & Francis Journals, vol. 53(7), pages 2202-2224, April.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:7:p:2202-2224
    DOI: 10.1080/00207543.2014.980460
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2014.980460
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2014.980460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    3. Muhammad Babar Ramzan & Shehreyar Mohsin Qureshi & Sonia Irshad Mari & Muhammad Saad Memon & Mandeep Mittal & Muhammad Imran & Muhammad Waqas Iqbal, 2019. "Effect of Time-Varying Factors on Optimal Combination of Quality Inspectors for Offline Inspection Station," Mathematics, MDPI, vol. 7(1), pages 1-18, January.
    4. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    5. Marc Janschekowitz & Gita Taherkhani & Sibel A. Alumur & Stefan Nickel, 2023. "An alternative approach to address uncertainty in hub location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 359-393, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:7:p:2202-2224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.