IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i4p1065-1076.html
   My bibliography  Save this article

A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine scheduling problems

Author

Listed:
  • Shih-Wei Lin
  • Kuo-Ching Ying

Abstract

This study considers the problem of job scheduling on unrelated parallel machines. A multi-objective multi-point simulated annealing (MOMSA) algorithm was proposed for solving this problem by simultaneously minimising makespan, total weighted completion time and total weighted tardiness. To assess the performance of the proposed heuristic and compare it with that of several benchmark heuristics, the obtained sets of non-dominated solutions were assessed using four multi-objective performance indicators. The computational results demonstrated that the proposed heuristic markedly outperformed the benchmark heuristics in terms of the four performance indicators. The proposed MOMSA algorithm can provide a new benchmark for future research related to the unrelated parallel machine scheduling problem addressed in this study.

Suggested Citation

  • Shih-Wei Lin & Kuo-Ching Ying, 2015. "A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1065-1076, February.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1065-1076
    DOI: 10.1080/00207543.2014.942011
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2014.942011
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2014.942011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norelhouda Sekkal & Fayçal Belkaid, 2020. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 660-696, October.
    2. Norelhouda Sekkal & Fayçal Belkaid, 0. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-37.
    3. Rui Zhang, 2017. "Sustainable Scheduling of Cloth Production Processes by Multi-Objective Genetic Algorithm with Tabu-Enhanced Local Search," Sustainability, MDPI, vol. 9(10), pages 1-26, September.
    4. Miao Tang & Minghua Hu & Honghai Zhang & Long Zhou, 2022. "Research on Multi Unmanned Aerial Vehicles Emergency Task Planning Method Based on Discrete Multi-Objective TLBO Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    5. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:4:p:1065-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.