Research on Multi Unmanned Aerial Vehicles Emergency Task Planning Method Based on Discrete Multi-Objective TLBO Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shih-Wei Lin & Kuo-Ching Ying, 2015. "A multi-point simulated annealing heuristic for solving multiple objective unrelated parallel machine scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1065-1076, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dagui Liu & Weiqing Wang & Huie Zhang & Wei Shi & Caiqing Bai & Huimin Zhang, 2023. "Day-Ahead and Intra-Day Optimal Scheduling Considering Wind Power Forecasting Errors," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Norelhouda Sekkal & Fayçal Belkaid, 0. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-37.
- Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
- Norelhouda Sekkal & Fayçal Belkaid, 2020. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 660-696, October.
- Rui Zhang, 2017. "Sustainable Scheduling of Cloth Production Processes by Multi-Objective Genetic Algorithm with Tabu-Enhanced Local Search," Sustainability, MDPI, vol. 9(10), pages 1-26, September.
More about this item
Keywords
task planning; emergency logistics UAV; discrete multi-objective; improved TLBO algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2555-:d:756218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.