IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i20p6114-6135.html
   My bibliography  Save this article

Bayesian belief network-based framework for sourcing risk analysis during supplier selection

Author

Listed:
  • Bimal Nepal
  • Om Prakash Yadav

Abstract

Increasing trend in global business integration and movement of material around the world has caused supply chain system susceptible to disruption involving higher risks. This paper presents a methodology for supplier selection in a global sourcing environment by considering multiple cost and risk factors. Failure modes and effects analysis technique from reliability engineering field and Bayesian belief networks are used to quantify the risk posed by each factor. The probability and the cost of each risk are then incorporated into a decision tree model to compute the total expected costs for each supply option. The supplier selection decision is made based on the total purchasing costs including both deterministic costs (such as product and transportation costs) and the risk-associated costs. The proposed approach is demonstrated using an example of a US-based Chemical distributor. This framework provides a visual tool for supply chain managers to see how cost and risks are distributed across the different alternatives. Lastly, managers can calculate expected value of perfect information to avoid a certain risk.

Suggested Citation

  • Bimal Nepal & Om Prakash Yadav, 2015. "Bayesian belief network-based framework for sourcing risk analysis during supplier selection," International Journal of Production Research, Taylor & Francis Journals, vol. 53(20), pages 6114-6135, October.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:20:p:6114-6135
    DOI: 10.1080/00207543.2015.1027011
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1027011
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1027011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikelowski, Lukas & Voss, Rika, 2021. "Approach for application-specific selection of risk assessment methods," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 853-877, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Surya Prakash & Sameer Kumar & Gunjan Soni & Vipul Jain & Ajay Pal Singh Rathore, 2020. "Closed-loop supply chain network design and modelling under risks and demand uncertainty: an integrated robust optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 837-864, July.
    3. Mohebalizadehgashti, Fatemeh & Zolfagharinia, Hossein & Amin, Saman Hassanzadeh, 2020. "Designing a green meat supply chain network: A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 312-327.
    4. Xiaoqing Li & Qingquan Jiang & Maxwell K. Hsu & Qinglan Chen, 2019. "Support or Risk? Software Project Risk Assessment Model Based on Rough Set Theory and Backpropagation Neural Network," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    5. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    6. Gülcan Petriçli & Gül Gökay Emel, 2016. "Determining Strategy Based Supplier Pre-Qualification Criteria With Fuzzy Relational Maps," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 11-40, September.
    7. Abroon Qazi & Mecit Can Emre Simsekler & Steven Formaneck, 2023. "Supply chain risk network value at risk assessment using Bayesian belief networks and Monte Carlo simulation," Annals of Operations Research, Springer, vol. 322(1), pages 241-272, March.
    8. Radoslav Delina & Renata Olejarova & Petr Doucek, 2023. "Effect of a new potential supplier on business to business negotiations performance: evidence-based analysis," Electronic Commerce Research, Springer, vol. 23(3), pages 1941-1970, September.
    9. Zhou, Rui & Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Sherwin, Michael D. & Yang, Dong, 2022. "A stochastic programming model with endogenous uncertainty for selecting supplier development programs to proactively mitigate supplier risk," Omega, Elsevier, vol. 107(C).
    10. Yash Daultani & Mohit Goswami & Omkarprasad S. Vaidya & Sushil Kumar, 2019. "Inclusive risk modeling for manufacturing firms: a Bayesian network approach," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2789-2803, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:20:p:6114-6135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.