IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v73y2022i1p26-38.html
   My bibliography  Save this article

Deep learning for survival and competing risk modelling

Author

Listed:
  • Gabriel Blumenstock
  • Stefan Lessmann
  • Hsin-Vonn Seow

Abstract

The article examines novel machine learning techniques for survival analysis in a credit risk modelling context. Using a large dataset of US mortgages, we evaluate the adequacy of DeepHit, a deep learning-based competing risk model, and random survival forests. The observed results provide strong evidence that both models predict default and prepayment risk more accurately than statistical benchmarks in the form of the Cox proportional hazard model and the Fine and Gray model. The superiority of the machine learning models is robust across different periods including stressed periods. We also find machine learning models do not require larger amounts of training data than the statistical benchmarks. Finally, we extend methods for estimating feature importance scores to deep neural networks for survival analysis and clarify which covariates determine the estimated survival functions of DeepHit. An online companion with additional results is available in Supplementary Information.

Suggested Citation

  • Gabriel Blumenstock & Stefan Lessmann & Hsin-Vonn Seow, 2022. "Deep learning for survival and competing risk modelling," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 26-38, January.
  • Handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:26-38
    DOI: 10.1080/01605682.2020.1838960
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2020.1838960
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2020.1838960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Anthony Bellotti & Rong Qu & Ruibin Bai, 2024. "Discrete-Time Survival Models with Neural Networks for Age–Period–Cohort Analysis of Credit Risk," Risks, MDPI, vol. 12(2), pages 1-26, February.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "On the Convergence of Credit Risk in Current Consumer Automobile Loans," Papers 2211.09176, arXiv.org, revised Jan 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:26-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.