IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v73y2022i1p15-25.html
   My bibliography  Save this article

Random survival forest for competing credit risks

Author

Listed:
  • Halina Frydman
  • Anna Matuszyk

Abstract

Random survival forest for Competing Risks (CR Rsf) is a tree-based estimation and prediction method. The applications of this recently proposed method have not yet been considered in the extant credit risk literature. The appealing features of CR Rsf compared to the existing competing risks methods are that it is nonparametric and has the ability to handle high-dimensional data. This paper applies CR Rsf to the financial dataset which involves two competing credit risks: default and early repayment. This application yields two novel findings. First, CR Rsf dominates, in terms of prediction accuracy, the state of art model in survival analysis-Cox proportional hazard model for competing risks. Second, ignoring the competing risk event of early repayment results in an upwardly-biased estimate of the cumulative probability of default. The first finding suggests that CR Rsf may be a useful alternative to the existing competing risks models. The second has ramifications for the extant literature devoted to the estimation of the probability of default in cases where a competing risk exists, but is not explicitly taken into account.

Suggested Citation

  • Halina Frydman & Anna Matuszyk, 2022. "Random survival forest for competing credit risks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 15-25, January.
  • Handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:15-25
    DOI: 10.1080/01605682.2020.1759385
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2020.1759385
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2020.1759385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "On the Convergence of Credit Risk in Current Consumer Automobile Loans," Papers 2211.09176, arXiv.org, revised Jan 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:15-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.