IDEAS home Printed from https://ideas.repec.org/a/taf/tjomxx/v15y2019i2p788-796.html
   My bibliography  Save this article

The De Martonne aridity index in Calabria (Southern Italy)

Author

Listed:
  • Gaetano Pellicone
  • Tommaso Caloiero
  • Ilaria Guagliardi

Abstract

In this paper, the annual rainfall and temperature values, measured in the period 1951-2016 in a region of southern Italy (Calabria), have been spatially interpolated using deterministic and geostatistical techniques in an R environment. In particular, Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Kriging with External Drift (KED) and Ordinary Cokriging (COK) were compared to evaluate the best suitability method in reproducing the actual surface. Then, the spatial variation of aridity in Calabria has been evaluated using the De Martonne aridity index (IDM), which is based on rainfall and temperature data. As a result, geostatistical methods incontrovertibly show a better estimate than the IDW. Specifically, the KED was identified as the best predictor method for both rainfall and temperature data. Moreover, the spatial distribution of the IDM evidenced that the majority of the study area can be classified as humid, with semi–arid conditions mainly identified in the coastal areas.

Suggested Citation

  • Gaetano Pellicone & Tommaso Caloiero & Ilaria Guagliardi, 2019. "The De Martonne aridity index in Calabria (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 788-796, July.
  • Handle: RePEc:taf:tjomxx:v:15:y:2019:i:2:p:788-796
    DOI: 10.1080/17445647.2019.1673840
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17445647.2019.1673840
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17445647.2019.1673840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Ricca & Ilaria Guagliardi, 2023. "Evidences of Soil Consumption Dynamics over Space and Time by Data Analysis in a Southern Italy Urban Sprawling Area," Land, MDPI, vol. 12(5), pages 1-22, May.
    2. Lavorato, Mateus & Braga, Marcelo José, 2021. "On the Risk Efficiency of a Weather Index Insurance Product for the Brazilian Semi-Arid Region," 2021 Conference, August 17-31, 2021, Virtual 315193, International Association of Agricultural Economists.
    3. Ioannis Charalampopoulos & Fotoula Droulia & Jeffrey Evans, 2023. "The Bioclimatic Change of the Agricultural and Natural Areas of the Adriatic Coastal Countries," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    4. Heiko Paeth & Daniel Schönbein & Luzia Keupp & Daniel Abel & Freddy Bangelesa & Miriam Baumann & Christian Büdel & Christian Hartmann & Christof Kneisel & Konstantin Kobs & Julian Krause & Martin Krec, 2023. "Climate change information tailored to the agricultural sector in Central Europe, exemplified on the region of Lower Franconia," Climatic Change, Springer, vol. 176(10), pages 1-24, October.
    5. Anna Sidiropoulou & Dimitrios Chouvardas & Konstantinos Mantzanas & Stefanos Stefanidis & Maria Karatassiou, 2022. "Impact of Transhumant Livestock Grazing Abandonment on Pseudo-Alpine Grasslands in Greece in the Context of Climatic Change," Land, MDPI, vol. 11(12), pages 1-18, November.
    6. Pakrooh, Parisa & Kamal, Muhamad Abdul, 2023. "Modeling the potential impacts of climate change on wheat yield in Iran: Evidence from national and provincial data analysis," Ecological Modelling, Elsevier, vol. 486(C).
    7. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Luis L. Paniagua & Abelardo García-Martín & Francisco J. Rebollo, 2023. "Future Scenarios for Aridity under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Land, MDPI, vol. 12(3), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjomxx:v:15:y:2019:i:2:p:788-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjom20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.