IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p494-d1601411.html
   My bibliography  Save this article

A High-Resolution Analysis of the de Martonne and Emberger Indices Under Different Climate Change Scenarios: Implications on the Natural and Agricultural Landscape of Northeastern Greece

Author

Listed:
  • Ioannis Charalampopoulos

    (Laboratory of General and Agricultural Meteorology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece)

  • Vassiliki Vlami

    (ELLINIKI ETAIRIA Society for the Environment and Cultural Heritage, 10558 Athens, Greece)

  • Ioannis P. Kokkoris

    (Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece)

  • Fotoula Droulia

    (Laboratory of General and Agricultural Meteorology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece)

  • Thomas Doxiadis

    (Doxiadis+, 10557 Athens, Greece)

  • Gianna Kitsara

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece)

  • Stamatis Zogaris

    (Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavisos, Greece)

  • Miltiades Lazoglou

    (ELLINIKI ETAIRIA Society for the Environment and Cultural Heritage, 10558 Athens, Greece)

Abstract

This article explores the impacts of climate change on the rural and natural landscapes in the region of Eastern Macedonia and Thrace, northeastern Greece. The spatial distributions of the bioclimatic de Martonne Index and the phytoclimatic Emberger Index were calculated at a very high resolution (~500 m) for present conditions (1970–2000), two future time periods (2030–2060; 2070–2100), and two greenhouse gas concentration scenarios (RCP4.5; RCP8.5). The results show significant bioclimatic changes, especially in the Rhodope Mountain range and along almost the whole length of the Greek–Bulgarian border, where forests of high ecosystem value are located, together with the rural areas along the Evros river valley, as well as in the coastal zone of the Aegean Sea. The article describes the processes of bioclimatic changes that can significantly modify the study area’s landscapes. The study area reveals a shift toward xerothermic environments over time, with significant bioclimatic changes projected under the extreme RCP8.5 scenario. By 2100, de Martonne projections indicate that around 40% of agricultural areas in the eastern, southern, and western regions will face Mediterranean and semi-humid conditions, requiring supplemental irrigation for sustainability. The Emberger Index predicts that approximately 42% of natural and agricultural landscapes will experience sub-humid conditions with mild or cool winters. In comparison, 5% will face drier humid/sub-humid, warm winter conditions. These foreseen futures propose initial interpretations for key landscape conservation, natural capital, and ecosystem services management.

Suggested Citation

  • Ioannis Charalampopoulos & Vassiliki Vlami & Ioannis P. Kokkoris & Fotoula Droulia & Thomas Doxiadis & Gianna Kitsara & Stamatis Zogaris & Miltiades Lazoglou, 2025. "A High-Resolution Analysis of the de Martonne and Emberger Indices Under Different Climate Change Scenarios: Implications on the Natural and Agricultural Landscape of Northeastern Greece," Land, MDPI, vol. 14(3), pages 1-27, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:494-:d:1601411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaetano Pellicone & Tommaso Caloiero & Ilaria Guagliardi, 2019. "The De Martonne aridity index in Calabria (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 788-796, July.
    2. Elena Georgopoulou & Nikos Gakis & Dimitris Kapetanakis & Dimitris Voloudakis & Maria Markaki & Yannis Sarafidis & Dimitris P. Lalas & George P. Laliotis & Konstantina Akamati & Iosif Bizelis & Markos, 2024. "Climate Change Risks for the Mediterranean Agri-Food Sector: The Case of Greece," Agriculture, MDPI, vol. 14(5), pages 1-31, May.
    3. Vassiliki Vlami & Ioannis P. Kokkoris & Ioannis Charalampopoulos & Thomas Doxiadis & Christos Giannakopoulos & Miltiades Lazoglou, 2023. "A Transect Method for Promoting Landscape Conservation in the Climate Change Context: A Case-Study in Greece," Sustainability, MDPI, vol. 15(17), pages 1-29, September.
    4. Aikaterini Lyra & Athanasios Loukas, 2023. "Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2625-2642, May.
    5. Iordanis Tzamtzis & Petros Ganatsas & Ioannis P. Kokkoris & Vasileios Samaritakis & Dimitrios Botsis & Marianthi Tsakaldimi & Ilias Tziritis & Natalia Kalevra & Nicholas M. Georgiadis, 2023. "A Sustainable Strategy for Reforestation and Restoration of Burnt Natural Areas in Mediterranean Regions: A Case Study from Greece," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    6. Kiriaki M. Keramitsoglou & Panagiotis Koudoumakis & Sofia Akrivopoulou & Rodope Papaevaggelou & Angelos L. Protopapas, 2023. "Biodiversity as an Outstanding Universal Value for Integrated Management of Natural and Cultural Heritage," Sustainability, MDPI, vol. 15(11), pages 1-35, May.
    7. Ioannis P. Kokkoris & Konstantinos Kougioumoutzis & Ioannis Charalampopoulos & Ektor Apostolidis & Ilias Apostolidis & Arne Strid & Panayotis Dimopoulos, 2023. "Conservation Responsibility for Priority Habitats under Future Climate Conditions: A Case Study on Juniperus drupacea Forests in Greece," Land, MDPI, vol. 12(11), pages 1-17, October.
    8. Nektarios N. Kourgialas & Georgios Psarras & Giasemi Morianou & Vassilios Pisinaras & Georgios Koubouris & Nektaria Digalaki & Stella Malliaraki & Katerina Aggelaki & Georgios Motakis & George Arampat, 2022. "Good Agricultural Practices Related to Water and Soil as a Means of Adaptation of Mediterranean Olive Growing to Extreme Climate-Water Conditions," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    9. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    10. J. Kapsomenakis & C. Douvis & A. Poupkou & S. Zerefos & S. Solomos & T. Stavraka & N. S. Melis & E. Kyriakidis & G. Kremlis & C. Zerefos, 2023. "Climate change threats to cultural and natural heritage UNESCO sites in the Mediterranean," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14519-14544, December.
    11. Vassiliki Vlami & Jan Danek & Stamatis Zogaris & Eirini Gallou & Ioannis P. Kokkoris & George Kehayias & Panayotis Dimopoulos, 2020. "Residents’ Views on Landscape and Ecosystem Services during a Wind Farm Proposal in an Island Protected Area," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Luis L. Paniagua & Abelardo García-Martín & Francisco J. Rebollo, 2023. "Future Scenarios for Aridity under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Land, MDPI, vol. 12(3), pages 1-13, February.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    4. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    5. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    6. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    7. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Giulio Zangari & Flavia Bartoli & Fernando Lucchese & Giulia Caneva, 2023. "Plant Diversity in Archaeological Sites and Its Bioindication Values for Nature Conservation: Assessments in the UNESCO Site Etruscan Necropolis of Tarquinia (Italy)," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    10. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    12. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    13. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    15. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    16. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    17. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    18. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    19. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    20. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:494-:d:1601411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.