In-game win probability models for Canadian football
Author
Abstract
Suggested Citation
DOI: 10.1080/2573234X.2021.2015252
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
- Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
- Lijuan Mao & Zhaofang Peng & Hongyou Liu & Miguel-Angel Gómez, 2016. "Identifying keys to win in the Chinese professional soccer league," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 16(3), pages 935-947, December.
- Ciner, Cetin, 2021. "Stock return predictability in the time of COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
- Lock Dennis & Nettleton Dan, 2014. "Using random forests to estimate win probability before each play of an NFL game," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 197-205, June.
- Kent J. Kostuk & Keith A. Willoughby, 2012. "A Decision Support System for Scheduling the Canadian Football League," Interfaces, INFORMS, vol. 42(3), pages 286-295, June.
- Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022.
"Informational efficiency and behaviour within in-play prediction markets,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
- Giovanni Angelini & Luca De Angelis & Carl Singleton, 2019. "Informational efficiency and behaviour within in-play prediction markets," Economics Discussion Papers em-dp2019-20, Department of Economics, University of Reading, revised 01 Apr 2021.
- Lopez Michael J. & Matthews Gregory J., 2015. "Building an NCAA men’s basketball predictive model and quantifying its success," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(1), pages 5-12, March.
- Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
- Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023.
"Betting on a buzz: Mispricing and inefficiency in online sportsbooks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
- Philip Ramirez & J. James Reade & Carl Singleton, 2021. "Betting on a buzz, mispricing and inefficiency in online sportsbooks," Economics Discussion Papers em-dp2021-10, Department of Economics, University of Reading, revised 27 Jul 2022.
- Li, Yuesen & Ma, Runqing & Gonçalves, Bruno & Gong, Bingnan & Cui, Yixiong & Shen, Yanfei, 2020. "Data-driven team ranking and match performance analysis in Chinese Football Super League," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- J Reade & C Singleton & L Vaughan Williams, 2020.
"Betting Markets for English Premier League Results and Scorelines: Evaluating a Simple Forecasting Model,"
Economic Issues Journal Articles, Economic Issues, vol. 25(1), pages 87-106, March.
- J. James Reade & Carl Singleton & Leighton Vaughan Williams, 2020. "Betting markets for English Premier League results and scorelines: evaluating a forecasting model," Economics Discussion Papers em-dp2020-03, Department of Economics, University of Reading.
- Marius Ötting & Christian Deutscher & Carl Singleton & Luca De Angelis, 2023. "Gambling on Momentum in Contests," Economics Discussion Papers em-dp2023-08, Department of Economics, University of Reading.
- Paul Bose & Eberhard Feess & Helge Mueller, 2022. "Favoritism towards High-Status Clubs: Evidence from German Soccer," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 38(2), pages 422-478.
- ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
- Hugo S. Gonçalves & Sérgio Moro, 2023. "On the economic impacts of COVID‐19: A text mining literature analysis," Review of Development Economics, Wiley Blackwell, vol. 27(1), pages 375-394, February.
- Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
- Raphael Flepp & Oliver Merz & Egon Franck, 2024. "When the league table lies: Does outcome bias lead to informationally inefficient markets?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 414-429, January.
- Ludden Ian G. & Khatibi Arash & King Douglas M. & Jacobson Sheldon H., 2020. "Models for generating NCAA men’s basketball tournament bracket pools," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 1-15, March.
- Greta Keliuotyte-Staniuleniene & Julius Kviklis, 2021. "Assessing the reaction of the Baltic stock market to the spread of the COVID-19 pandemic," Technium Social Sciences Journal, Technium Science, vol. 25(1), pages 260-272, November.
- Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
- Chowdhury, Subhasish M. & Jewell, Sarah & Singleton, Carl, 2024.
"Can awareness reduce (and reverse) identity-driven bias in judgement? Evidence from international cricket,"
Journal of Economic Behavior & Organization, Elsevier, vol. 226(C).
- Subhasish M. Chowdhury & Sarah Jewell & Carl Singleton, 2023. "Can Awareness Reduce (and Reverse) Identity-driven Bias in Judgement? Evidence from International Cricket," Economics Discussion Papers em-dp2023-10, Department of Economics, University of Reading.
- Chowdhury, Subhasish M & Jewell, Sarah & Singleton, Carl, 2024. "Can Awareness Reduce (and Reverse) Identity-Driven Bias in Judgement? Evidence from International Cricket," IZA Discussion Papers 16963, Institute of Labor Economics (IZA).
- Subhasish M. Chowdhury & Sarah Jewell & Carl Singleton, 2023. "Can Awareness Reduce (and Reverse) Identity-driven Bias in Judgement? Evidence from International Cricket," Working Papers 2023017, The University of Sheffield, Department of Economics.
- Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
- Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
- Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
- Maria Bolsinova & Gunter Maris & Abe D. Hofman & Han L. J. van der Maas & Matthieu J. S. Brinkhuis, 2022. "Urnings: A new method for tracking dynamically changing parameters in paired comparison systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 91-118, January.
- Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjbaxx:v:5:y:2022:i:2:p:164-178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjba .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.