IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v14y2014i4p443-466.html
   My bibliography  Save this article

Can CDM monitoring requirements be reduced while maintaining environmental integrity?

Author

Listed:
  • Carsten Warnecke

Abstract

Monitoring, reporting, and verification (MRV) requirements in the Clean Development Mechanism (CDM) are perceived to be of high quality, but also complex and stringent. Only one-third of the registered projects successfully managed initial verification and already received carbon credits. The time required to achieve first issuance remains high despite considerable improvements in other CDM project cycle steps. This leads to the question of whether MRV provisions in the CDM represent barriers that could be lowered while ensuring the CDM's integrity. The CDM requirements are compared with the MRV provisions of the EU Emission Trading System (EU ETS). The comparison shows that CDM-MRV provisions are often stricter and less flexible compared to similar provisions in the EU ETS. Due to structural differences between the EU ETS and the CDM, some different MRV approaches are justified and reflect the CDM's disparate objectives and complexity. It is found that some CDM provisions result in barriers which seem avoidable and do not contribute to the CDM's environmental integrity. Recommendations are made for CDM-specific improvements and general structural changes to improve cost-efficiency and reduce uncertainty with relevance to policy developments around future market mechanisms.

Suggested Citation

  • Carsten Warnecke, 2014. "Can CDM monitoring requirements be reduced while maintaining environmental integrity?," Climate Policy, Taylor & Francis Journals, vol. 14(4), pages 443-466, July.
  • Handle: RePEc:taf:tcpoxx:v:14:y:2014:i:4:p:443-466
    DOI: 10.1080/14693062.2014.875285
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2014.875285
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2014.875285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Kossoy & Philippe Ambrosi, "undated". "State and Trends of the Carbon Market 2010," World Bank Publications - Reports 13401, The World Bank Group.
    2. Alexandre Kossoy & Pierre Guigon, "undated". "State and Trends of the Carbon Market 2012," World Bank Publications - Reports 13336, The World Bank Group.
    3. Alexandre Kossoy & Pierre Guigon, "undated". "State and Trends of the Carbon Market 2012," World Bank Publications - Reports 13335, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentin Bellassen & Igor Shishlov, 2017. "Pricing Monitoring Uncertainty in Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 949-974, December.
    2. Warnecke, Carsten & Wartmann, Sina & Höhne, Niklas & Blok, Kornelis, 2014. "Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms," Energy Policy, Elsevier, vol. 68(C), pages 413-422.
    3. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng, Jichuan & Qiu, Hong, 2018. "Governmentality within REDD+: Optimizing incentives and efforts to reduce emissions from deforestation and degradation," Land Use Policy, Elsevier, vol. 76(C), pages 611-622.
    2. Jinshan Zhu & Hui Yao & Yingkai Tang & Liyong Wang, 2015. "An econometric analysis of sub-national Clean Development Mechanism performance in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1137-1153, October.
    3. Matthew Paterson, 2014. "Governing Mobilities, Mobilising Carbon," Mobilities, Taylor & Francis Journals, vol. 9(4), pages 570-584, September.
    4. Jichuan Sheng & Weihai Zhou & Alex De Sherbinin, 2018. "Uncertainty in Estimates, Incentives, and Emission Reductions in REDD+ Projects," IJERPH, MDPI, vol. 15(7), pages 1-21, July.
    5. Keita Honjo, 2015. "Cooperative Emissions Trading Game: International Permit Market Dominated by Buyers," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    6. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    7. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    8. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    9. Till Neeff & Daniela G�hler & Francisco Ascui, 2014. "Finding a path for REDD+ between ODA and the CDM," Climate Policy, Taylor & Francis Journals, vol. 14(2), pages 149-166, March.
    10. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    11. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    12. Rannou, Yves & Barneto, Pascal, 2016. "Futures trading with information asymmetry and OTC predominance: Another look at the volume/volatility relations in the European carbon markets," Energy Economics, Elsevier, vol. 53(C), pages 159-174.
    13. Olli-Pekka Kuuselaa & Gregory S. Amacher & Kwok Ping Tsang, 2013. "Intensity-Based Permit Quotas and the Business Cycle: Does Flexibility Pay Off?," Research Department Publications IDB-WP-450, Inter-American Development Bank, Research Department.
    14. Mazza, Paolo & Petitjean, Mikael, 2015. "How integrated is the European carbon derivatives market?," Finance Research Letters, Elsevier, vol. 15(C), pages 18-30.
    15. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    16. Jongmin Yu & Mindy L. Mallory, 2020. "Carbon price interaction between allocated permits and generated offsets," Operational Research, Springer, vol. 20(2), pages 671-700, June.
    17. Coleman, Andrew, 2018. "Forest-based carbon sequestration, and the role of forward, futures, and carbon-lending markets: A comparative institutions approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 95-104.
    18. Ling Huang & Yishu Zhou, 2019. "Carbon Prices and Fuel Switching: A Quasi-experiment in Electricity Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 53-98, September.
    19. Daskalakis, George, 2013. "On the efficiency of the European carbon market: New evidence from Phase II," Energy Policy, Elsevier, vol. 54(C), pages 369-375.
    20. Chunguang Sheng & Guangyu Wang & Yude Geng & Lirong Chen, 2020. "The Correlation Analysis of Futures Pricing Mechanism in China’s Carbon Financial Market," Sustainability, MDPI, vol. 12(18), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:14:y:2014:i:4:p:443-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.