IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2023y2023i9p916-932.html
   My bibliography  Save this article

Mortality forecasting using the four-way CANDECOMP/PARAFAC decomposition

Author

Listed:
  • Giovanni Cardillo
  • Paolo Giordani
  • Susanna Levantesi
  • Andrea Nigri
  • Alessandro Spelta

Abstract

To design appropriate pension or insurance plans it is crucial to understand mortality heterogeneity across demographic features, such as age, gender, and country. To this aim, we propose a coherent mortality forecasting methodology, which leverages the four-way CANDECOMP/PARAFAC and Vector-Error Correction models. We examine how age groups, years, countries, and gender impact target variables, namely log-centered mortality rates and compositional transformation of mortality data using the Human Mortality Database. The CANDECOMP/PARAFAC model synthesizes the behavior of the target variables through a few latent components and highlights the evolution of the temporal patterns. These patterns are employed to forecast future trajectories of mortality with Vector-Error Correction models, which account for the non-stationarity of the series. We carry out Monte Carlo simulations to obtain the distributions of the time component over the forecasted period 2001–2015, and we evaluate the goodness of the prediction by computing the Root Mean Square Error and the Mean Absolute Error. Our analysis underlines that understanding mortality dynamics in a high-dimensional framework is crucial for demographic assessments and could help design appropriate pension plans that mitigate the burden of increased longevity. The paper provides two steps further on methodological developments in the field of mortality analysis and forecasting in a high-dimensional space by (i) offering a comprehensive picture of mortality data through the four-way decomposition and (ii) designing appropriate forecasting of mortality data which relies on the projection of the temporal component through Vector-Error Correction models.

Suggested Citation

  • Giovanni Cardillo & Paolo Giordani & Susanna Levantesi & Andrea Nigri & Alessandro Spelta, 2023. "Mortality forecasting using the four-way CANDECOMP/PARAFAC decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(9), pages 916-932, October.
  • Handle: RePEc:taf:sactxx:v:2023:y:2023:i:9:p:916-932
    DOI: 10.1080/03461238.2023.2175326
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2023.2175326
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2023.2175326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2023:y:2023:i:9:p:916-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.