IDEAS home Printed from https://ideas.repec.org/a/taf/rwinxx/v42y2017i6p663-677.html
   My bibliography  Save this article

Assessing India’s drip-irrigation boom: efficiency, climate change and groundwater policy

Author

Listed:
  • Trevor Birkenholtz

Abstract

This article draws on a case from the north-western Indian state of Rajasthan to examine whether drip irrigation saves water. Drip irrigation is being promoted to preserve groundwater and enhance resilience to climate change. However, the article finds that in the absence of regulations over groundwater abstraction, farmers acquire drip irrigation to intensify production rather than to conserve water. This occurs in a political and economic context where farmers are incentivized to do so, further exacerbating groundwater overdraft. The article concludes with a discussion of drip irrigation’s impact on farmers’ livelihoods and its implications for groundwater policy.

Suggested Citation

  • Trevor Birkenholtz, 2017. "Assessing India’s drip-irrigation boom: efficiency, climate change and groundwater policy," Water International, Taylor & Francis Journals, vol. 42(6), pages 663-677, August.
  • Handle: RePEc:taf:rwinxx:v:42:y:2017:i:6:p:663-677
    DOI: 10.1080/02508060.2017.1351910
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02508060.2017.1351910
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02508060.2017.1351910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhargava, Alok, 2019. "Climate change, demographic pressures and global sustainability," Economics & Human Biology, Elsevier, vol. 33(C), pages 149-154.
    2. Jordan, Cristian & Donoso, Guillermo & Speelman, Stijn, 2021. "Measuring the effect of improved irrigation technologies on irrigated agriculture. A study case in Central Chile," Agricultural Water Management, Elsevier, vol. 257(C).
    3. Mariem Baccar & Jacques-Eric Bergez & Stephane Couture & Muddu Sekhar & Laurent Ruiz & Delphine Leenhardt, 2021. "Building Climate Change Adaptation Scenarios with Stakeholders for Water Management: A Hybrid Approach Adapted to the South Indian Water Crisis," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    4. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    5. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    6. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    7. von Gnechten, Rachel & Uhlenbrook, Stefan & van der Bliek, Julie & Yu, Winston, 2021. "PCan water productivity improvements save us from global water scarcity?. Report of the workshop organized by the WASAG (Global Framework on Water Scarcity in Agriculture) Working Group on Sustainable," Conference Proceedings h050554, International Water Management Institute.
    8. Mateos, Luciano & dos Santos Almeida, Alexsandro Claudio & Frizzone, José Antônio & Lima, Sílvio Carlos Ribeiro Vieira, 2018. "Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach," Agricultural Water Management, Elsevier, vol. 206(C), pages 176-186.
    9. X. C. Cao & R. Shu & X. P. Guo & W. G. Wang, 2019. "Scarce water resources and priority irrigation schemes from agronomic crops," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 399-417, March.
    10. Bahinipati, Chandra Sekhar & Viswanathan, P.K., 2019. "Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat," Land Use Policy, Elsevier, vol. 86(C), pages 253-260.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rwinxx:v:42:y:2017:i:6:p:663-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rwin20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.