IDEAS home Printed from https://ideas.repec.org/a/taf/reroxx/v28y2015i1p132-166.html
   My bibliography  Save this article

Performance of Value at Risk models in the midst of the global financial crisis in selected CEE emerging capital markets

Author

Listed:
  • Mirjana Miletic
  • Sinisa Miletic

Abstract

The aim of this paper is to investigate the performance of Value at Risk (VaR) models in selected Central and Eastern European (CEE) emerging capital markets. Daily returns of Croatian (CROBEX), Czech (PX50), Hungarian (BUX) and Romanian (BET) stock exchange indices are analysed for the period January, 2000 – February, 2012, while daily returns of the Serbian (BELEX15) index is examined for the period September, 2005 – February, 2012. In recent years there has been much research conducted into VaR in developed markets, while papers dealing with VaR calculation in CEE are rare. Furthermore, VaR models created and suited for liquid and well-developed markets that assume normal distribution are less reliable for capital markets in emerging economies, such as Central and Eastern European Union member and candidate states. Since capital markets in European emerging economies are highly volatile, less liquid and strongly dependent on the unexpected external shocks, market risk estimation based on normality assumption in CEE countries is more problematic. This motivates us to implement GARCH-type methods that involve time varying volatility and heavy tails of the empirical distribution of returns. We test the hypothesis that using the assumption of heavy tailed distribution it is possible to forecast market risk more precisely, especially in times of crisis, than under the assumption of normal distribution or using historical simulations method. Our backtesting results for the last 500 observations are based on the Kupiec POF and Christoffersen independence test. They show that GARCH-type models with t error distribution in most analysed cases give better VaR estimation than GARCH type models with normal errors in the case of a 99% confidence level, while in the case of a 95% confidence level it is the opposite. The results of backtesting analysis for the crisis period (after the collapse of Lehman Brothers) show that GARCH-type models with t-distribution of residuals provide better VaR estimates compared with GARCH-type models with normal distribution, historical simulations and RiskMetrics methods. The RiskMetrics method in the most cases underestimates market risk.

Suggested Citation

  • Mirjana Miletic & Sinisa Miletic, 2015. "Performance of Value at Risk models in the midst of the global financial crisis in selected CEE emerging capital markets," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 132-166, January.
  • Handle: RePEc:taf:reroxx:v:28:y:2015:i:1:p:132-166
    DOI: 10.1080/1331677X.2015.1028243
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1331677X.2015.1028243
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1331677X.2015.1028243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xiaoyu, 2022. "Exploring How Macroeconomic Factors Affect REITs and Evaluating Its Downside Risk – Empirical Evidence From China and the US," Junior Management Science (JUMS), Junior Management Science e. V., vol. 7(4), pages 874-898.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:reroxx:v:28:y:2015:i:1:p:132-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rero .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.