IDEAS home Printed from https://ideas.repec.org/a/taf/rcejxx/v12y2019i1p68-76.html
   My bibliography  Save this article

Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution

Author

Listed:
  • Qiuzi Fu
  • Sofia B. Villas-Boas
  • George Judge

Abstract

Since Benford’s law is an empirical phenomenon that occurs in a range of data sets, this raises the question as to whether or not the same thing might be true in terms of the Chinese income distribution data. We focus on the first significant digit (FSD) distribution of Chinese micro income data from the 2005 Inter-Census sample, which corresponds to 1% of Chinese population and other micro income data from the China family panel studies (CFPS) and Chinese General Social Survey (CGSS). We use information theoretic-entropy based methods to investigate the degree to which Benford’s FSD law is consistent with the FSD of Chinese income data and our findings suggest consistency between the Chinese FSD income distribution and Benford’s distribution. The close connection between the two distributions has implications for the quality of the sample of Chinese micro data.

Suggested Citation

  • Qiuzi Fu & Sofia B. Villas-Boas & George Judge, 2019. "Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution," China Economic Journal, Taylor & Francis Journals, vol. 12(1), pages 68-76, January.
  • Handle: RePEc:taf:rcejxx:v:12:y:2019:i:1:p:68-76
    DOI: 10.1080/17538963.2018.1477418
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17538963.2018.1477418
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17538963.2018.1477418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tam Cho, Wendy K. & Gaines, Brian J., 2007. "Breaking the (Benford) Law: Statistical Fraud Detection in Campaign Finance," The American Statistician, American Statistical Association, vol. 61, pages 218-223, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.
    2. Roy Cerqueti & Claudio Lupi, 2023. "Severe testing of Benford’s law," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 677-694, June.
    3. Philip E Hulme & Danish A Ahmed & Phillip J Haubrock & Brooks A Kaiser & Melina Kourantidou & Boris Leroy & Shana M Mcdermott, 2024. "Widespread imprecision in estimates of the economic costs of invasive alien species worldwide," Post-Print hal-04633043, HAL.
    4. Dang, Canh Thien & Owens, Trudy, 2020. "Does transparency come at the cost of charitable services? Evidence from investigating British charities," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 314-343.
    5. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    6. John Morrow, 2014. "Benford's Law, Families of Distributions and a Test Basis," CEP Discussion Papers dp1291, Centre for Economic Performance, LSE.
    7. Edward J. Lusk & Michael Halperin, 2014. "Detecting Newcomb-Benford Digital Frequency Anomalies in the Audit Context: Suggested Chi2 Test Possibilities," Accounting and Finance Research, Sciedu Press, vol. 3(2), pages 191-191, May.
    8. Stefan Günnel & Karl-Heinz Tödter, 2009. "Does Benford’s Law hold in economic research and forecasting?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 36(3), pages 273-292, August.
    9. Lee, Joanne & Cho, Wendy K. Tam & Judge, George G., 2010. "Stigler's approach to recovering the distribution of first significant digits in natural data sets," Statistics & Probability Letters, Elsevier, vol. 80(2), pages 82-88, January.
    10. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    11. Wójcik, Michał Ryszard, 2014. "A characterization of Benford’s law through generalized scale-invariance," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 1-5.
    12. Montag, Josef, 2015. "Identifying Odometer Fraud: Evidence from the Used Car Market in the Czech Republic," MPRA Paper 65182, University Library of Munich, Germany.
    13. Frank Heilig & Edward J. Lusk, 2017. "A Robust Newcomb-Benford Account Screening Profiler: An Audit Decision Support System," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 8(3), pages 27-39, July.
    14. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    15. Rosa Abrantes-Metz & Sofia Villas-Boas & George Judge, 2011. "Tracking the Libor rate," Applied Economics Letters, Taylor & Francis Journals, vol. 18(10), pages 893-899.
    16. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    17. Druică, Elena & Oancea, Bogdan & Vâlsan, Călin, 2018. "Benford's law and the limits of digit analysis," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 75-82.
    18. Ioana Sorina Deleanu, 2017. "Do Countries Consistently Engage in Misinforming the International Community about Their Efforts to Combat Money Laundering? Evidence Using Benford’s Law," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-19, January.
    19. José A. Álvarez-Jareño & Elena Badal-Valero & José Manuel Pavía, 2017. "Using machine learning for financial fraud detection in the accounts of companies investigated for money laundering," Working Papers 2017/07, Economics Department, Universitat Jaume I, Castellón (Spain).
    20. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rcejxx:v:12:y:2019:i:1:p:68-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rcej .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.