IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v9y2009i6p663-692.html
   My bibliography  Save this article

Spectral methods for volatility derivatives

Author

Listed:
  • Claudio Albanese
  • Harry Lo
  • Aleksandar Mijatovic

Abstract

In the first quarter of 2006, the Chicago Board Options Exchange introduced, as one of the listed products, options on its implied volatility index (VIX). This created the challenge of developing a pricing framework that can simultaneously handle European options, forward-starts, options on the realized variance and options on the VIX. In this paper we propose a new approach to this problem using spectral methods. We use a regime switching model with jumps and local volatility defined by Albanese and Mijatovic and calibrate it to the European options on the S&P 500 for a broad range of strikes and maturities. The main idea of this paper is to 'lift' (i.e. extend) the generator of the underlying process to keep track of the relevant path information, namely the realized variance. The lifted generator is too large a matrix to be diagonalized numerically. We overcome this difficulty by applying a new semi-analytic algorithm for block-diagonalization. This method enables us to evaluate numerically the joint distribution between the underlying stock price and the realized variance, which in turn gives us a way of pricing consistently European options, general accrued variance payoffs and forward-starting and VIX options.

Suggested Citation

  • Claudio Albanese & Harry Lo & Aleksandar Mijatovic, 2009. "Spectral methods for volatility derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 663-692.
  • Handle: RePEc:taf:quantf:v:9:y:2009:i:6:p:663-692
    DOI: 10.1080/14697680902773603
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680902773603
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680902773603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
    2. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.
    3. Nicolas Merener, 2012. "Swap rate variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 249-261, May.
    4. Albanese, Claudio, 2006. "Operator Methods, Abelian Processes And Dynamic Conditioning," MPRA Paper 5246, University Library of Munich, Germany, revised 06 Nov 2007.
    5. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.
    6. Albanese, Claudio, 2007. "Callable Swaps, Snowballs And Videogames," MPRA Paper 5229, University Library of Munich, Germany, revised 01 Oct 2007.
    7. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    8. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    2. Stamatis Leontsinis & Carol Alexander, 2017. "Arithmetic variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 551-569, April.
    3. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    4. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    5. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    6. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Jobst, Andreas A., 2014. "Measuring systemic risk-adjusted liquidity (SRL)—A model approach," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.
    9. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    10. Lin Mi & Allan Hodgson, 2018. "Real estate's information and volatility links with stock, bond and money markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 465-491, November.
    11. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Robert A. Jarrow & Simon S. Kwok, 2021. "Inferring financial bubbles from option data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1013-1046, November.
    14. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    16. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    17. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    18. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    19. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    20. Bronka Rzepkowski, 2002. "Heterogeneous expectations, currency options and the euro/dollar," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 147-157.

    More about this item

    Keywords

    Volatility modelling; Volatility smile fitting; Volatility surfaces; Stochastic volatility Quantitative finance;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:9:y:2009:i:6:p:663-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.