IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v3y2003i4p285-287.html
   My bibliography  Save this article

Vol-Bond: an analytical solution

Author

Listed:
  • Roberto Baviera

Abstract

We find an analytical solution of the Vol-Bond according to the multi-factor Gaussian Heath-Jarrow-Morton model. We show how to calibrate the model with market data. This solution allows complete (and fast) control of this class of derivatives and of their sensitivities.

Suggested Citation

  • Roberto Baviera, 2003. "Vol-Bond: an analytical solution," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 285-287.
  • Handle: RePEc:taf:quantf:v:3:y:2003:i:4:p:285-287
    DOI: 10.1088/1469-7688/3/4/304
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/4/304
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1088/1469-7688/3/4/304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Baviera, 2007. "A simple solution for sticky cap and sticky floor," Quantitative Finance, Taylor & Francis Journals, vol. 7(3), pages 285-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    3. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    4. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    5. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    6. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.
    7. Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
    8. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    9. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    10. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    11. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    12. repec:uts:finphd:40 is not listed on IDEAS
    13. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321, arXiv.org.
    14. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    15. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    17. Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.
    18. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    19. Sandra Peterson & Richard C. Stapleton & Marti G. Subrahmanyam, 1999. "The Valuation of American-Style Swaptions in a Two-factor Spot-Futures Model," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-078, New York University, Leonard N. Stern School of Business-.
    20. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    21. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:3:y:2003:i:4:p:285-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.