IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i7p1243-1253.html
   My bibliography  Save this article

A new mixture cure model under competing risks to score online consumer loans

Author

Listed:
  • Nailong Zhang
  • Qingyu Yang
  • Aidan Kelleher
  • Wujun Si

Abstract

In credit scoring, survival analysis models have been widely applied to answer the question as to whether and when an applicant would default. In this paper, we propose a novel mixture cure proportional hazards model under competing risks. Most existing mixture cure models either do not consider competing risks or generally assume that a subpopulation of subjects is immune to any risk from all the competing risks. Compared with existing models, the proposed model is more flexible since it assumes that a subpopulation of subjects is immune to a subset of risks instead of being immune to all the risks. To estimate model parameters, we derive the likelihood function of the proposed model, based on which an expectation maximization estimation algorithm is developed. A simulation algorithm is designed to simulate time-to-event observations from the proposed model, and simulation studies are conducted to verify the proposed methodology. A real world example of credit scoring for online customer loans based on the proposed model is demonstrated.

Suggested Citation

  • Nailong Zhang & Qingyu Yang & Aidan Kelleher & Wujun Si, 2019. "A new mixture cure model under competing risks to score online consumer loans," Quantitative Finance, Taylor & Francis Journals, vol. 19(7), pages 1243-1253, July.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:7:p:1243-1253
    DOI: 10.1080/14697688.2018.1552791
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1552791
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1552791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    2. Yang, Qi & He, Haijin & Lu, Bin & Song, Xinyuan, 2022. "Mixture additive hazards cure model with latent variables: Application to corporate default data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "On the Convergence of Credit Risk in Current Consumer Automobile Loans," Papers 2211.09176, arXiv.org, revised Jan 2024.
    4. Lohmann, Christian & Ohliger, Thorsten, 2024. "Predicting the cure of a defaulted company: Nonlinear relationships between loan-related variables and the cure probability," Research in International Business and Finance, Elsevier, vol. 70(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:7:p:1243-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.