IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i3p519-532.html
   My bibliography  Save this article

Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach

Author

Listed:
  • Rongju Zhang
  • Nicolas Langrené
  • Yu Tian
  • Zili Zhu
  • Fima Klebaner
  • Kais Hamza

Abstract

We present a simulation-and-regression method for solving dynamic portfolio optimization problems in the presence of general transaction costs, liquidity costs and market impact. This method extends the classical least squares Monte Carlo algorithm to incorporate switching costs, corresponding to transaction costs and transient liquidity costs, as well as multiple endogenous state variables, namely the portfolio value and the asset prices subject to permanent market impact. To handle endogenous state variables, we adapt a control randomization approach to portfolio optimization problems and further improve the numerical accuracy of this technique for the case of discrete controls. We validate our modified numerical method by solving a realistic cash-and-stock portfolio with a power-law liquidity model. We identify the certainty equivalent losses associated with ignoring liquidity effects, and illustrate how our dynamic optimization method protects the investor's capital under illiquid market conditions. Lastly, we analyze, under different liquidity conditions, the sensitivities of certainty equivalent returns and optimal allocations with respect to trading volume, stock price volatility, initial investment amount, risk aversion level and investment horizon.

Suggested Citation

  • Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 519-532, March.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:519-532
    DOI: 10.1080/14697688.2018.1524155
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1524155
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1524155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Deng & Zhong-guo Zhou, 2024. "Liquidity Jump, Liquidity Diffusion, and Portfolio of Assets with Extreme Liquidity," Papers 2407.00813, arXiv.org.
    2. Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
    3. Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Post-Print hal-02909342, HAL.
    4. repec:tin:wpaper:20230016 is not listed on IDEAS
    5. Chen, Shun & Ge, Lei, 2021. "A learning-based strategy for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 936-942.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:3:p:519-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.