IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i1p1-17.html
   My bibliography  Save this article

The DNA of security return

Author

Listed:
  • Changho Han

Abstract

No abstract is available for this item.

Suggested Citation

  • Changho Han, 2015. "The DNA of security return," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 1-17, January.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:1:p:1-17
    DOI: 10.1080/14697688.2014.920100
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.920100
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.920100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955, September.
    2. Gerlow, Mary E. & Irwin, Scott H. & Liu, Te-Ru, 1993. "Economic evaluation of commodity price forecasting models," International Journal of Forecasting, Elsevier, vol. 9(3), pages 387-397, November.
    3. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    4. repec:bla:jfinan:v:44:y:1989:i:5:p:1247-62 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akturk, M. Serkan & Ketzenberg, Michael & Yıldız, Barış, 2021. "Managing consumer returns with technology-enabled countermeasures," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    5. Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
    6. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    7. Fan, Chenguang & Bae, Seongho & Liu, Yu, 2024. "Can FinTech transform corporate liquidity? Evidence from China," Innovation and Green Development, Elsevier, vol. 3(2).
    8. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    9. Panarello, Demetrio, 2021. "Economic insecurity, conservatism, and the crisis of environmentalism: 30 years of evidence," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    10. Prelorentzos, Arsenios-Georgios N. & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Xidonas, Panos & Goutte, Stephane & Thomakos, Dimitrios D., 2024. "Introducing the GVAR-GARCH model: Evidence from financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    11. Connor, Gregory & Linton, Oliver, 2007. "Semiparametric estimation of a characteristic-based factor model of common stock returns," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 694-717, December.
    12. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    13. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    14. Leger, Lawrence & Leone, Vitor, 2008. "Changes in the risk structure of stock returns: Consumer Confidence and the dotcom bubble," Review of Financial Economics, Elsevier, vol. 17(3), pages 228-244, August.
    15. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    16. Simplice A. Asongu & Ghassen El Montasser & Hassen Toumi, 2015. "Testing the Relationships between Energy Consumption, CO2 emissions and Economic Growth in 24 African Countries: a Panel ARDL Approach," Research Africa Network Working Papers 15/037, Research Africa Network (RAN).
    17. Brian Basvi, 2024. "A Model on a Comparative Cross-Regime Analysis on Modelling and Forecasting of the Zimbabwe Stock Market Volatility Using ARCH (1), GARCH (1,1) and EGARCH (1,2) as the Extension to Account for Leverag," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 745-760, May.
    18. Elbakry, Ashraf E. & Nwachukwu, Jacinta C. & Abdou, Hussein A. & Elshandidy, Tamer, 2017. "Comparative evidence on the value relevance of IFRS-based accounting information in Germany and the UK," Journal of International Accounting, Auditing and Taxation, Elsevier, vol. 28(C), pages 10-30.
    19. Garcia, Philip & Irwin, Scott H. & Leuthold, Raymond M. & Yang, Li, 1997. "The value of public information in commodity futures markets," Journal of Economic Behavior & Organization, Elsevier, vol. 32(4), pages 559-570, April.
    20. Shujie Ma & Oliver Linton & Jiti Gao, 2018. "Estimation in semiparametric quantile factor models," CeMMAP working papers CWP07/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.