IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i2p255-263.html
   My bibliography  Save this article

A perturbative approach to Bermudan options pricing with applications

Author

Listed:
  • Roberto Baviera
  • Lorenzo Giada

Abstract

In this paper we address the problem of the valuation of Bermudan option derivatives in the framework of multi-factor interest rate models. We propose a solution in which the exercise decision entails a properly defined series expansion. The method allows for the fast computation of both a lower and an upper bound for the option price, and a tight control of its accuracy, for a generic Markovian interest rate model. In particular, we show detailed computations in the case of the Bond Market Model. As examples we consider the case of a zero coupon Bermudan option and a coupon bearing Bermudan option; in order to demonstrate the wide applicability of the proposed methodology we also consider the case of a last generation payoff, a Bermudan option on a CMS spread bond.

Suggested Citation

  • Roberto Baviera & Lorenzo Giada, 2013. "A perturbative approach to Bermudan options pricing with applications," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 255-263, January.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:255-263
    DOI: 10.1080/14697688.2011.589400
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.589400
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.589400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anastasia Kolodko & John Schoenmakers, 2006. "Iterative construction of the optimal Bermudan stopping time," Finance and Stochastics, Springer, vol. 10(1), pages 27-49, January.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    5. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    6. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    7. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    8. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    2. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    3. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    4. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    5. Burcu Aydoğan & Ümit Aksoy & Ömür Uğur, 2018. "On the methods of pricing American options: case study," Annals of Operations Research, Springer, vol. 260(1), pages 79-94, January.
    6. Denis Belomestny & John Schoenmakers, 2021. "From optimal martingales to randomized dual optimal stopping," Papers 2102.01533, arXiv.org.
    7. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    8. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    9. Christian Bayer & Denis Belomestny & Paul Hager & Paolo Pigato & John Schoenmakers, 2020. "Randomized optimal stopping algorithms and their convergence analysis," Papers 2002.00816, arXiv.org.
    10. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    11. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    12. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    13. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    14. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    15. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    16. J'er^ome Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Papers 1901.05672, arXiv.org, revised Jul 2020.
    17. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non‐Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71, January.
    18. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    19. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    20. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:255-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.