IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/v5y2017i1p1416902.html
   My bibliography  Save this article

A multi-factor model of heterogeneous traders in a dynamic stock market

Author

Listed:
  • Dong-Jin Pyo

Abstract

This study develops an agent-based computational stock market model in which each trader’s buying and selling decisions are endogenously determined by multiple factors: namely, firm profitability, past stock price movement, and imitation of other traders. Each trader can switch from being a buyer to a seller, and vice versa, depending on market conditions. Simulation findings imply liquidity in the stock market decreases as more traders try to behave in a similar way to other traders. Stock return volatility is increasing in memory length when the information set of a trader includes only the fundamental of stock. On the other hand, when all traders consider only the past stock price movement, stock prices undergo boom and bust cycles with the occasional no-trade states. Furthermore, when traders consider three factors equally, the stock return is characterized by more pronounced fat-tail property and lower volatility.

Suggested Citation

  • Dong-Jin Pyo, 2017. "A multi-factor model of heterogeneous traders in a dynamic stock market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1416902-141, January.
  • Handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1416902
    DOI: 10.1080/23322039.2017.1416902
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2017.1416902
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2017.1416902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. LeBaron, Blake, 2001. "Evolution And Time Horizons In An Agent-Based Stock Market," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 225-254, April.
    2. Lauren Cohen & Andrea Frazzini & Christopher Malloy, 2008. "The Small World of Investing: Board Connections and Mutual Fund Returns," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 951-979, October.
    3. Mitra, Kaushik, 2005. "Is more data better?," Journal of Economic Behavior & Organization, Elsevier, vol. 56(2), pages 263-272, February.
    4. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    5. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 95-132, February.
    6. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    7. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    8. Kluger, Brian D. & McBride, Mark E., 2011. "Intraday trading patterns in an intelligent autonomous agent-based stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 226-245, August.
    9. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    10. LeBaron, Blake, 2012. "Heterogeneous gain learning and the dynamics of asset prices," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 424-445.
    11. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    14. repec:bla:jfinan:v:59:y:2004:i:1:p:137-163 is not listed on IDEAS
    15. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2005. "Thy Neighbor's Portfolio: Word‐of‐Mouth Effects in the Holdings and Trades of Money Managers," Journal of Finance, American Finance Association, vol. 60(6), pages 2801-2824, December.
    16. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    17. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    18. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    19. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    20. Jeffrey R. Brown & Zoran Ivković & Paul A. Smith & Scott Weisbenner, 2008. "Neighbors Matter: Causal Community Effects and Stock Market Participation," Journal of Finance, American Finance Association, vol. 63(3), pages 1509-1531, June.
    21. Shiller, 021Robert J. & Pound, John, 1989. "Survey evidence on diffusion of interest and information among investors," Journal of Economic Behavior & Organization, Elsevier, vol. 12(1), pages 47-66, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pyo, Dong-Jin, 2015. "Animal spirits and stock market dynamics," ISU General Staff Papers 201501010800005596, Iowa State University, Department of Economics.
    2. Pyo, Dong-Jin, 2014. "A Multi-Factor Model of Heterogeneous Traders in a Dynamic Stock Market," Staff General Research Papers Archive 37358, Iowa State University, Department of Economics.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    4. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    6. Panchenko, Valentyn & Gerasymchuk, Sergiy & Pavlov, Oleg V., 2013. "Asset price dynamics with heterogeneous beliefs and local network interactions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2623-2642.
    7. Ya-Chi Huang & Chueh-Yung Tsao, 2018. "Discovering Traders’ Heterogeneous Behavior in High-Frequency Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 821-846, April.
    8. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    9. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    10. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    11. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    12. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    13. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    14. Heimer, Rawley Z., 2014. "Friends do let friends buy stocks actively," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 527-540.
    15. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Sandrine Jacob Leal, 2015. "Fundamentalists, Chartists and Asset pricing anomalies," Post-Print hal-01508002, HAL.
    17. Gerasymchuk, S. & Pavlov, O.V., 2010. "Asset Price Dynamics with Local Interactions under Heterogeneous Beliefs," CeNDEF Working Papers 10-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    18. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    19. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    20. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1416902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.