IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/v5y2017i1p1310416.html
   My bibliography  Save this article

A statistical analysis of the social and environmental risks of the international trade in virtual water

Author

Abstract

This work develops a statistical methodology of analysis of the international trade in virtual water in the context of sustainable evolution. Using the example of agriculture, the impact of the flows of virtual water in the composition of products using indicators related to social and environmental risks was investigated. In the analysis data from websites of World Bank and the World trade organization for the period from 1996 to 2012 were used. The methodology was based on the toolkit of econometric modelling. The analysis showed the presence of stable groups of countries, including the groups of mainly exporting and mainly importing agricultural products. The share of the third group of countries with the varying sign of the balance of export and import amounted to only 30%. The factors influencing the formation of groups, in particular, were the role of water resources in terms of their scale and efficiency of use. The study of the impact of export and import of agricultural products on the indicators related to environmental and social risks identified significant problematic dependencies. The overall pattern for the three groups was that the countries with more intense trade flows had a lower rating of ecological sustainability.

Suggested Citation

  • Y. Kopnova, 2017. "A statistical analysis of the social and environmental risks of the international trade in virtual water," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1310416-131, January.
  • Handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1310416
    DOI: 10.1080/23322039.2017.1310416
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2017.1310416
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2017.1310416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    2. Mesfin M. Mekonnen & Arjen Y. Hoekstra, 2014. "Water conservation through trade: the case of Kenya," Water International, Taylor & Francis Journals, vol. 39(4), pages 451-468, July.
    3. Horlemann, Lena & Neubert, Susanne, 2007. "Virtual water trade: a realistic concept for resolving the water crisis?," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 25, number 25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    2. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    3. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    4. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    5. Angela Cheptea & Catherine Laroche-Dupraz, 2019. "Is irrigation driven by the economic value of internationally traded agricultural products?," Post-Print hal-02278996, HAL.
    6. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    7. Chen, Rui & Wilson, Norbert L.W., 2017. "Virtual Water Trade: Do Bilateral Tariffs Matter?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258279, Agricultural and Applied Economics Association.
    8. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    9. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    10. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    11. repec:hal:spmain:info:hdl:2441/4krkv5tkmp871q08f5rv2n43tn is not listed on IDEAS
    12. Liu, Fangmei & Li, Li & Liang, Gemin & Huang, Liqiao & Gao, Wei, 2022. "National water footprints and embodied environmental consequences of major economic sectors-a case study of Japan," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 30-46.
    13. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    14. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).
    15. Xinghua Fan & Xuxia Li & Jiuli Yin & Jiaochen Liang, 2019. "Temporal Characteristics and Spatial Homogeneity of Virtual Water Trade: A Complex Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1467-1480, March.
    16. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    17. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    18. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.
    19. Andrea Fracasso & Massimo Riccaboni & Martina Sartori & Stefano Schiavo, 2017. "Modeling the future evolution of the virtual water trade network," Sciences Po publications info:hdl:2441/4krkv5tkmp8, Sciences Po.
    20. Candau, Fabien & Regnacq, Charles & Schlick, Julie, 2022. "Climate change, comparative advantage and the water capability to produce agricultural goods," World Development, Elsevier, vol. 158(C).
    21. Catherine Laroche-Dupraz & Angela Cheptea, 2021. "Is irrigation driven by the price of internationally traded agricultural products?," Post-Print hal-03227465, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1310416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.