IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v52y2023i2p283-293.html
   My bibliography  Save this article

Robust Bayesian approach to logistic regression modeling in small sample size utilizing a weakly informative student’s t prior distribution

Author

Listed:
  • Kenneth Chukwuemeka Asanya
  • Mohamed Kharrat
  • Akaninyene Udo Udom
  • Emmanuel Torsen

Abstract

This work discourages using the logistic regression (LR) model for estimative purposes when the sample size is small. We propose a new model called the “Robust Bayesian Logistic (RBL) model” that minimizes bias in the estimated logistic regression coefficients when the sample size is small, and covariate corruption is suspected. For the prior specification in the proposed RBL model, all the logistic regression coefficients are assigned independent Student’s t-distribution with the location parameter 0, scale parameter 1, and degree of freedom 7 for the constant term and degree of freedom of 1 for all other regression coefficients. In our experimental study, the proposed RBL model outperforms the Logistic Regression (LR) model by having a lower mean squared error (MSE) in the regression coefficients estimated for all the sample sizes considered. The proposed RBL model has a lower standard deviation than the LR model for all the estimated regression coefficients on the real-life dataset. We suggest that the proposed RBL model be considered for logistic modeling since it generates stable, consistent, and reliable estimates, especially when the sample size is small. The proposed RBL model is a fully Bayesian method implemented in the R environment using the RJAGS package.

Suggested Citation

  • Kenneth Chukwuemeka Asanya & Mohamed Kharrat & Akaninyene Udo Udom & Emmanuel Torsen, 2023. "Robust Bayesian approach to logistic regression modeling in small sample size utilizing a weakly informative student’s t prior distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(2), pages 283-293, January.
  • Handle: RePEc:taf:lstaxx:v:52:y:2023:i:2:p:283-293
    DOI: 10.1080/03610926.2021.1912767
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2021.1912767
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2021.1912767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imaduddin Ahmed & Priti Parikh & Parfait Munezero & Graham Sianjase & D’Maris Coffman, 2023. "The impact of power outages on households in Zambia," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(3), pages 835-867, October.
    2. Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Zhao, Guanjia & Ma, Suxia, 2023. "Data-driven modeling-based digital twin of supercritical coal-fired boiler for metal temperature anomaly detection," Energy, Elsevier, vol. 278(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:52:y:2023:i:2:p:283-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.