IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i8p1938-1954.html
   My bibliography  Save this article

Bayesian predictive modeling for Inverse Gamma-Pareto composite distribution

Author

Listed:
  • M. S. Aminzadeh
  • M. Deng

Abstract

Inverse Gamma-Pareto composite distribution is considered as a model for heavy tailed data. The maximum likelihood (ML), smoothed empirical percentile (SM), and Bayes estimators (informative and non-informative) for the parameter θ, which is the boundary point for the supports of the two distributions are derived. A Bayesian predictive density is derived via a gamma prior for θ and the density is used to estimate risk measures. Accuracy of estimators of θ and the risk measures are assessed via simulation studies. It is shown that the informative Bayes estimator is consistently more accurate than ML, Smoothed, and the non-informative Bayes estimators.

Suggested Citation

  • M. S. Aminzadeh & M. Deng, 2019. "Bayesian predictive modeling for Inverse Gamma-Pareto composite distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(8), pages 1938-1954, April.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:8:p:1938-1954
    DOI: 10.1080/03610926.2018.1440595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1440595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1440595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Deng & Mostafa S. Aminzadeh, 2023. "Bayesian Inference for the Loss Models via Mixture Priors," Risks, MDPI, vol. 11(9), pages 1-27, August.
    2. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim, 2021. "On Bayesian approach to composite Pareto models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.
    3. Bowen Liu & Malwane M. A. Ananda, 2022. "A Generalized Family of Exponentiated Composite Distributions," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    4. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    5. Min Deng & Mostafa Aminzadeh & Min Ji, 2021. "Bayesian Predictive Analysis of Natural Disaster Losses," Risks, MDPI, vol. 9(1), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:8:p:1938-1954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.