IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i6p1491-1509.html
   My bibliography  Save this article

Gamma lifetimes and associated inference for interval-censored cure rate model with COM–Poisson competing cause

Author

Listed:
  • Piyachart Wiangnak
  • Suvra Pal

Abstract

In this article, we consider a competing cause scenario and assume the wider family of Conway–Maxwell–Poisson (COM–Poisson) distribution to model the number of competing causes. Assuming the type of the data to be interval censored, the main contribution is in developing the steps of the expectation maximization (EM) algorithm to determine the maximum likelihood estimates (MLEs) of the model parameters. A profile likelihood approach within the EM framework is proposed to estimate the COM–Poisson shape parameter. An extensive simulation study is conducted to evaluate the performance of the proposed EM algorithm. Model selection within the wider class of COM–Poisson distribution is carried out using likelihood ratio test and information-based criteria. A study to demonstrate the effect of model mis-specification is also carried out. Finally, the proposed estimation method is applied to a data on smoking cessation and a detailed analysis of the obtained results is presented.

Suggested Citation

  • Piyachart Wiangnak & Suvra Pal, 2018. "Gamma lifetimes and associated inference for interval-censored cure rate model with COM–Poisson competing cause," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(6), pages 1491-1509, March.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:6:p:1491-1509
    DOI: 10.1080/03610926.2017.1321769
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1321769
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1321769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    2. Diego I. Gallardo & Yolanda M. Gómez & Héctor J. Gómez & María José Gallardo-Nelson & Marcelo Bourguignon, 2023. "The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation," Mathematics, MDPI, vol. 11(3), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:6:p:1491-1509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.