IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i16p3838-3856.html
   My bibliography  Save this article

Logistic regression analyses for indirect data

Author

Listed:
  • Heiko Groenitz

Abstract

The article’s topic is logistic regression for direct data on the covariates, but indirect data on the endogenous variable. The indirect data may result from a privacy-protecting survey procedure for sensitive characteristics or from statistical disclosure control. Various procedures to generate the indirect data exist. However, we show that it is possible to develop a general approach for logistic regression analyses with indirect data that covers many procedures. We first derive a general algorithm for the maximum likelihood estimation and a general procedure for variance estimation. Subsequently, lots of examples demonstrate the broad applicability of our general framework.

Suggested Citation

  • Heiko Groenitz, 2018. "Logistic regression analyses for indirect data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(16), pages 3838-3856, August.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:16:p:3838-3856
    DOI: 10.1080/03610926.2017.1364387
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1364387
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1364387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
    2. Shen-Ming Lee & Phuoc-Loc Tran & Truong-Nhat Le & Chin-Shang Li, 2023. "Prediction of a Sensitive Feature under Indirect Questioning via Warner’s Randomized Response Technique and Latent Class Model," Mathematics, MDPI, vol. 11(2), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:16:p:3838-3856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.