IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i21p10879-10896.html
   My bibliography  Save this article

Parameter estimation for mixtures of skew Laplace normal distributions and application in mixture regression modeling

Author

Listed:
  • Fatma Zehra Doğru
  • Olcay Arslan

Abstract

In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.

Suggested Citation

  • Fatma Zehra Doğru & Olcay Arslan, 2017. "Parameter estimation for mixtures of skew Laplace normal distributions and application in mixture regression modeling," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(21), pages 10879-10896, November.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:21:p:10879-10896
    DOI: 10.1080/03610926.2016.1252400
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1252400
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1252400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.
    2. Yan Li & Chun Yu & Yize Zhao & Weixin Yao & Robert H. Aseltine & Kun Chen, 2022. "Pursuing sources of heterogeneity in modeling clustered population," Biometrics, The International Biometric Society, vol. 78(2), pages 716-729, June.
    3. Fatma Zehra Doğru & Olcay Arslan, 2021. "Finite mixtures of skew Laplace normal distributions with random skewness," Computational Statistics, Springer, vol. 36(1), pages 423-447, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:21:p:10879-10896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.