IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i7p1953-1968.html
   My bibliography  Save this article

A taxonomy of mixing and outcome distributions based on conjugacy and bridging

Author

Listed:
  • Michael G. Kenward
  • Geert Molenberghs

Abstract

The generalized linear mixed model (GLMM) is commonly used for the analysis of hierarchical non Gaussian data. It combines an exponential family model formulation with normally distributed random effects. A drawback is the difficulty of deriving convenient marginal mean functions with straightforward parametric interpretations. Several solutions have been proposed, including the marginalized multilevel model (directly formulating the marginal mean, together with a hierarchical association structure) and the bridging approach (choosing the random-effects distribution such that marginal and hierarchical mean functions share functional forms). Another approach, useful in both a Bayesian and a maximum-likelihood setting, is to choose a random-effects distribution that is conjugate to the outcome distribution. In this paper, we contrast the bridging and conjugate approaches. For binary outcomes, using characteristic functions and cumulant generating functions, it is shown that the bridge distribution is unique. Self-bridging is introduced as the situation in which the outcome and random-effects distributions are the same. It is shown that only the Gaussian and degenerate distributions have well-defined cumulant generating functions for which self-bridging holds.

Suggested Citation

  • Michael G. Kenward & Geert Molenberghs, 2016. "A taxonomy of mixing and outcome distributions based on conjugacy and bridging," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(7), pages 1953-1968, April.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:7:p:1953-1968
    DOI: 10.1080/03610926.2013.870205
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.870205
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.870205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:7:p:1953-1968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.