IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i15p3173-3191.html
   My bibliography  Save this article

Capturing the Spillover Effect With Multiplicative Error Models

Author

Listed:
  • Edoardo Otranto

Abstract

Recent statistical models for the analysis of volatility in financial markets serve the purpose of incorporating the effect of other markets in their structure, in order to study the spillover or the contagion phenomena. Extending the Multiplicative Error Model we are able to capture these characteristics, under the assumption that the conditional mean of the volatility can be decomposed into the sum of one component representing the proper volatility of the time series analyzed, and other components, each representing the volatility transmitted from one other market. Each component follows a proper dynamics with elements that can be usefully interpreted. This particular decomposition allows to establish, each time, the contribution brought by each individual market to the global volatility of the market object of the analysis. We experiment this model with four stock indices.

Suggested Citation

  • Edoardo Otranto, 2015. "Capturing the Spillover Effect With Multiplicative Error Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(15), pages 3173-3191, August.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:15:p:3173-3191
    DOI: 10.1080/03610926.2013.819919
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.819919
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.819919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. BenSaïda, Ahmed & Litimi, Houda & Abdallah, Oussama, 2018. "Volatility spillover shifts in global financial markets," Economic Modelling, Elsevier, vol. 73(C), pages 343-353.
    2. Khalifa, Ahmed A. & Alsarhan, Abdulwahab A. & Bertuccelli, Pietro, 2017. "Causes and consequences of energy price shocks on petroleum-based stock market using the spillover asymmetric multiplicative error model," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 307-314.
    3. G.M. Gallo & D. Lacava & E. Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Working Paper CRENoS 202306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    4. Darko B. Vuković & Senanu Dekpo-Adza & Vladislav Khmelnitskiy & Mustafa Özer, 2023. "Spillovers across the Asian OPEC+ Financial Market," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    5. Demetrio Lacava & Giampiero M. Gallo & Edoardo Otranto, 2022. "Unconventional policies effects on stock market volatility: The MAP approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1245-1265, November.
    6. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
    7. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    8. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    9. Costa, Antonio & Matos, Paulo & da Silva, Cristiano, 2022. "Sectoral connectedness: New evidence from US stock market during COVID-19 pandemics," Finance Research Letters, Elsevier, vol. 45(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:15:p:3173-3191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.