IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2023i2p563-577.html
   My bibliography  Save this article

Reconciled Estimates of Monthly GDP in the United States

Author

Listed:
  • Gary Koop
  • Stuart McIntyre
  • James Mitchell
  • Aubrey Poon

Abstract

In the United States, income and expenditure-side estimates of gross domestic product (GDP) (GDPI and GDPE ) measure “true” GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDPE , GDPI , unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error perspective (i.e., the two GDP proxies are assumed to equal true GDP plus measurement error). Without further restrictions, our model is unidentified. We consider a range of restrictions that allow for point and set identification of true GDP and show that they lead to informative monthly GDP estimates. We illustrate how these new monthly data contribute to our historical understanding of business cycles and we provide a real-time application nowcasting monthly GDP over the pandemic recession.

Suggested Citation

  • Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2023. "Reconciled Estimates of Monthly GDP in the United States," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 563-577, April.
  • Handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:563-577
    DOI: 10.1080/07350015.2022.2044336
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2022.2044336
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2022.2044336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting Growth-at-Risk of the United States: Housing Price versus Housing Sentiment or Attention," Working Papers 202401, University of Pretoria, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:563-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.