Author
Listed:
- Rong Chen
- Yuanyuan Ji
- Guolin Jiang
- Han Xiao
- Ruoqing Xie
- Pingfang Zhu
Abstract
Composite index is a powerful and popularly used tool in providing an overall measure of a subject by summarizing a group of measurements (component indices) of different aspects of the subject. It is widely used in economics, finance, policy evaluation, performance ranking, and many other fields. Effective construction of a composite index has been studied extensively. The most widely used approach is to use a linear combination of the component indices, where the combination weights are determined by optimizing an objective function. To maximize the overall variation of the resulting composite index, the combination weights can be obtained through principal component analysis. In this article, we propose to incorporate expert opinions into the construction of the composite index. It is noted that expert opinion often provides useful information in assessing which of the component indices are more important for the overall measure of the subject. We consider the case that a group of experts have been consulted, each providing a set of importance scores for the component indices, along with a set of confidence scores which reflects the expert’s own confidence in his/her assessment. In addition, the constructor of the composite index can also provide an assessment of the expertise level of each expert. We use linear combinations to construct the composite index, where the combination weights are determined by maximizing the sum of resulting composite index variation and the negative weighted sum of squares of deviation between the combination weights used and the experts’ scores. A data-driven approach is used to find the optimal balance between the two sources of information. Theoretical properties of the procedure are investigated. Simulation examples and an economic application on constructing science and technology development index is carried out to illustrate the proposed method.
Suggested Citation
Rong Chen & Yuanyuan Ji & Guolin Jiang & Han Xiao & Ruoqing Xie & Pingfang Zhu, 2022.
"Composite Index Construction with Expert Opinion,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 67-79, December.
Handle:
RePEc:taf:jnlbes:v:41:y:2022:i:1:p:67-79
DOI: 10.1080/07350015.2021.2000418
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:67-79. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.