IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v31y2013i2p184-207.html
   My bibliography  Save this article

Local Linear GMM Estimation of Functional Coefficient IV Models With an Application to Estimating the Rate of Return to Schooling

Author

Listed:
  • Liangjun Su
  • Irina Murtazashvili
  • Aman Ullah

Abstract

We consider the local linear generalized method of moment (GMM) estimation of functional coefficient models with a mix of discrete and continuous data and in the presence of endogenous regressors. We establish the asymptotic normality of the estimator and derive the optimal instrumental variable that minimizes the asymptotic variance-covariance matrix among the class of all local linear GMM estimators. Data-dependent bandwidth sequences are also allowed for. We propose a nonparametric test for the constancy of the functional coefficients, study its asymptotic properties under the null hypothesis as well as a sequence of local alternatives and global alternatives, and propose a bootstrap version for it. Simulations are conducted to evaluate both the estimator and test. Applications to the 1985 Australian Longitudinal Survey data indicate a clear rejection of the null hypothesis of the constant rate of return to education, and that the returns to education obtained in earlier studies tend to be overestimated for all the work experience.

Suggested Citation

  • Liangjun Su & Irina Murtazashvili & Aman Ullah, 2013. "Local Linear GMM Estimation of Functional Coefficient IV Models With an Application to Estimating the Rate of Return to Schooling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 184-207, April.
  • Handle: RePEc:taf:jnlbes:v:31:y:2013:i:2:p:184-207
    DOI: 10.1080/07350015.2012.754314
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.754314
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.754314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hong-Fan, 2021. "Iterative GMM for partially linear single-index models with partly endogenous regressors," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Samuele CENTORRINO & Jeffrey S. RACINE, 2017. "Semiparametric Varying Coefficient Models with Endogenous Covariates," Annals of Economics and Statistics, GENES, issue 128, pages 261-295.
    3. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    4. Tadao Hoshino, 2018. "Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 160-172, January.
    5. Cai, Zongwu & Fang, Ying & Lin, Ming & Su, Jia, 2018. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," IRTG 1792 Discussion Papers 2018-047, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    7. Yan Li & Liangjun Su & Yuewu Xu, 2015. "A Combined Approach to the Inference of Conditional Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 203-220, April.
    8. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.
    9. Huang, Bai & Lee, Tae-Hwy & Ullah, Aman, 2020. "Combined estimation of semiparametric panel data models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 30-45.
    10. Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
    11. Shengjie Hong & Yu-Chin Hsu & Yuanyuan Wan, 2023. "Subvector inference for Varying Coefficient Models with Partial Identification," Working Papers tecipa-756, University of Toronto, Department of Economics.
    12. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    13. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    14. Irina Murtazashvili & Di Liu & Artem Prokhorov, 2015. "Two-sample nonparametric estimation of intergenerational income mobility in the United States and Sweden," Canadian Journal of Economics, Canadian Economics Association, vol. 48(5), pages 1733-1761, December.
    15. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    16. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    17. Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:2:p:184-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.