IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i543p1645-1658.html
   My bibliography  Save this article

A General Framework for Inference on Algorithm-Agnostic Variable Importance

Author

Listed:
  • Brian D. Williamson
  • Peter B. Gilbert
  • Noah R. Simon
  • Marco Carone

Abstract

In many applications, it is of interest to assess the relative contribution of features (or subsets of features) toward the goal of predicting a response—in other words, to gauge the variable importance of features. Most recent work on variable importance assessment has focused on describing the importance of features within the confines of a given prediction algorithm. However, such assessment does not necessarily characterize the prediction potential of features, and may provide a misleading reflection of the intrinsic value of these features. To address this limitation, we propose a general framework for nonparametric inference on interpretable algorithm-agnostic variable importance. We define variable importance as a population-level contrast between the oracle predictiveness of all available features versus all features except those under consideration. We propose a nonparametric efficient estimation procedure that allows the construction of valid confidence intervals, even when machine learning techniques are used. We also outline a valid strategy for testing the null importance hypothesis. Through simulations, we show that our proposal has good operating characteristics, and we illustrate its use with data from a study of an antibody against HIV-1 infection. Supplementary materials for this article are available online.

Suggested Citation

  • Brian D. Williamson & Peter B. Gilbert & Noah R. Simon & Marco Carone, 2023. "A General Framework for Inference on Algorithm-Agnostic Variable Importance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1645-1658, July.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1645-1658
    DOI: 10.1080/01621459.2021.2003200
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.2003200
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.2003200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Craig A. Magaret & Li Li & Allan C. deCamp & Morgane Rolland & Michal Juraska & Brian D. Williamson & James Ludwig & Cindy Molitor & David Benkeser & Alex Luedtke & Brian Simpkins & Fei Heng & Yanqing, 2024. "Quantifying how single dose Ad26.COV2.S vaccine efficacy depends on Spike sequence features," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1645-1658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.