IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p756-769.html
   My bibliography  Save this article

Log-Linear Bayesian Additive Regression Trees for Multinomial Logistic and Count Regression Models

Author

Listed:
  • Jared S. Murray

Abstract

We introduce Bayesian additive regression trees (BART) for log-linear models including multinomial logistic regression and count regression with zero-inflation and overdispersion. BART has been applied to nonparametric mean regression and binary classification problems in a range of settings. However, existing applications of BART have been mostly limited to models for Gaussian “data,” either observed or latent. This is primarily because efficient MCMC algorithms are available for Gaussian likelihoods. But while many useful models are naturally cast in terms of latent Gaussian variables, many others are not—including models considered in this article. We develop new data augmentation strategies and carefully specified prior distributions for these new models. Like the original BART prior, the new prior distributions are carefully constructed and calibrated to be flexible while guarding against overfitting. Together the new priors and data augmentation schemes allow us to implement an efficient MCMC sampler outside the context of Gaussian models. The utility of these new methods is illustrated with examples and an application to a previously published dataset. Supplementary materials for this article are available online.

Suggested Citation

  • Jared S. Murray, 2021. "Log-Linear Bayesian Additive Regression Trees for Multinomial Logistic and Count Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 756-769, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:756-769
    DOI: 10.1080/01621459.2020.1813587
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1813587
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1813587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin P. Josey & Priyanka deSouza & Xiao Wu & Danielle Braun & Rachel Nethery, 2023. "Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 20-41, March.
    2. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    3. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:756-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.