IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1435-1448.html
   My bibliography  Save this article

Principal Boundary on Riemannian Manifolds

Author

Listed:
  • Zhigang Yao
  • Zhenyue Zhang

Abstract

We consider the classification problem and focus on nonlinear methods for classification on manifolds. For multivariate datasets lying on an embedded nonlinear Riemannian manifold within the higher-dimensional ambient space, we aim to acquire a classification boundary for the classes with labels, using the intrinsic metric on the manifolds. Motivated by finding an optimal boundary between the two classes, we invent a novel approach—the principal boundary. From the perspective of classification, the principal boundary is defined as an optimal curve that moves in between the principal flows traced out from two classes of data, and at any point on the boundary, it maximizes the margin between the two classes. We estimate the boundary in quality with its direction, supervised by the two principal flows. We show that the principal boundary yields the usual decision boundary found by the support vector machine in the sense that locally, the two boundaries coincide. Some optimality and convergence properties of the random principal boundary and its population counterpart are also shown. We illustrate how to find, use, and interpret the principal boundary with an application in real data. Supplementary materials for this article are available online.

Suggested Citation

  • Zhigang Yao & Zhenyue Zhang, 2020. "Principal Boundary on Riemannian Manifolds," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1435-1448, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1435-1448
    DOI: 10.1080/01621459.2019.1610660
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1610660
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1610660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1435-1448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.