IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1126-1137.html
   My bibliography  Save this article

An Adapted Loss Function for Censored Quantile Regression

Author

Listed:
  • Mickaël De Backer
  • Anouar El Ghouch
  • Ingrid Van Keilegom

Abstract

In this article, we study a novel approach for the estimation of quantiles when facing potential right censoring of the responses. Contrary to the existing literature on the subject, the adopted strategy of this article is to tackle censoring at the very level of the loss function usually employed for the computation of quantiles, the so-called “check” function. For interpretation purposes, a simple comparison with the latter reveals how censoring is accounted for in the newly proposed loss function. Subsequently, when considering the inclusion of covariates for conditional quantile estimation, by defining a new general loss function the proposed methodology opens the gate to numerous parametric, semiparametric, and nonparametric modeling techniques. To illustrate this statement, we consider the well-studied linear regression under the usual assumption of conditional independence between the true response and the censoring variable. For practical minimization of the studied loss function, we also provide a simple algorithmic procedure shown to yield satisfactory results for the proposed estimator with respect to the existing literature in an extensive simulation study. From a more theoretical prospect, consistency and asymptotic normality of the estimator for linear regression are obtained using several recent results on nonsmooth semiparametric estimation equations with an infinite-dimensional nuisance parameter, while numerical examples illustrate the adequateness of a simple bootstrap procedure for inferential purposes. Lastly, an application to a real dataset is used to further illustrate the validity and finite sample performance of the proposed estimator. Supplementary materials for this article are available online.

Suggested Citation

  • Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2019. "An Adapted Loss Function for Censored Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1126-1137, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1126-1137
    DOI: 10.1080/01621459.2018.1469996
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1469996
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1469996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    2. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    3. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2023. "Quantile Regression with a New Exponentiated Odd Log-Logistic Weibull Distribution," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    4. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    5. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1126-1137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.