IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1828-1845.html
   My bibliography  Save this article

Mixtures of g-Priors in Generalized Linear Models

Author

Listed:
  • Yingbo Li
  • Merlise A. Clyde

Abstract

Mixtures of Zellner’s g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to generalized linear models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this article, we unify mixtures of g-priors in GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1 + g), which encompasses as special cases several mixtures of g-priors in the literature, such as the hyper-g, Beta-prime, truncated Gamma, incomplete inverse-Gamma, benchmark, robust, hyper-g/n, and intrinsic priors. Through an integrated Laplace approximation, the posterior distribution of 1/(1 + g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically, leading to “Compound Hypergeometric Information Criteria” for model selection. We discuss the local geometric properties of the g-prior in GLMs and show how the desiderata for model selection proposed by Bayarri et al., such as asymptotic model selection consistency, intrinsic consistency, and measurement invariance may be used to justify the prior and specific choices of the hyper parameters. We illustrate inference using these priors and contrast them to other approaches via simulation and real data examples. The methodology is implemented in the R package BAS and freely available on CRAN. Supplementary materials for this article are available online.

Suggested Citation

  • Yingbo Li & Merlise A. Clyde, 2018. "Mixtures of g-Priors in Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1828-1845, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1828-1845
    DOI: 10.1080/01621459.2018.1469992
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1469992
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1469992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saralees Nadarajah & Malick Kebe, 2023. "The Confluent Hypergeometric Beta Distribution," Mathematics, MDPI, vol. 11(9), pages 1-23, May.
    2. Mohit Garg & Suneel Sarswat, 2024. "Efficient and Verified Continuous Double Auctions," Papers 2412.08624, arXiv.org.
    3. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    4. Ho, Manh-Toan & La, Viet-Phuong & Nguyen, Minh-Hoang & Pham, Thanh-Hang & Vuong, Thu-Trang & Vuong, Ha-My & Pham, Hung-Hiep & Hoang, Anh-Duc & Vuong, Quan-Hoang, 2020. "An analytical view on STEM education and outcomes: Examples of the social gap and gender disparity in Vietnam," Children and Youth Services Review, Elsevier, vol. 119(C).
    5. Mohit Garg & Suneel Sarswat, 2022. "The Design and Regulation of Exchanges: A Formal Approach," Papers 2210.05447, arXiv.org.
    6. Hans, Christopher M. & Peruggia, Mario & Wang, Junyan, 2023. "Empirical Bayes Model Averaging with Influential Observations: Tuning Zellner’s g Prior for Predictive Robustness," Econometrics and Statistics, Elsevier, vol. 27(C), pages 102-119.
    7. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    8. Yu-Fang Chien & Haiming Zhou & Timothy Hanson & Theodore Lystig, 2023. "Informative g -Priors for Mixed Models," Stats, MDPI, vol. 6(1), pages 1-23, January.
    9. Kirsner, Daniel & Sansó, Bruno, 2020. "Multi-scale shotgun stochastic search for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1828-1845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.