IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p95-110.html
   My bibliography  Save this article

Variable Selection for Skewed Model-Based Clustering: Application to the Identification of Novel Sleep Phenotypes

Author

Listed:
  • Meredith L. Wallace
  • Daniel J. Buysse
  • Anne Germain
  • Martica H. Hall
  • Satish Iyengar

Abstract

In sleep research, applying finite mixture models to sleep characteristics captured through multiple data types, including self-reported sleep diary, a wrist monitor capturing movement (actigraphy), and brain waves (polysomnography), may suggest new phenotypes that reflect underlying disease mechanisms. However, a direct mixture model application is challenging because there are many sleep variables from which to choose, and sleep variables are often highly skewed even in homogenous samples. Moreover, previous sleep research findings indicate that some of the most clinically interesting solutions will be those that incorporate all three data types. Thus, we present two novel skewed variable selection algorithms based on the multivariate skew normal (MSN) distribution: one that selects the best set of variables ignoring data type and another that embraces the exploratory nature of clustering and suggests multiple statistically plausible sets of variables that each incorporate all data types. Through a simulation study, we empirically compare our approach with other asymmetric and normal dimension reduction strategies for clustering. Finally, we demonstrate our methods using a sample of older adults with and without insomnia. The proposed MSN-based variable selection algorithm appears to be suitable for both MSN and multivariate normal cluster distributions, especially with moderate to large-sample sizes. Supplementary materials for this article are available online.

Suggested Citation

  • Meredith L. Wallace & Daniel J. Buysse & Anne Germain & Martica H. Hall & Satish Iyengar, 2018. "Variable Selection for Skewed Model-Based Clustering: Application to the Identification of Novel Sleep Phenotypes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 95-110, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:95-110
    DOI: 10.1080/01621459.2017.1330202
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1330202
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1330202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    3. Tu, Wangshu & Browne, Ryan & Subedi, Sanjeena, 2024. "A mixture of logistic skew-normal multinomial models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:95-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.