IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p369-379.html
   My bibliography  Save this article

On Inverse Probability Weighting for Nonmonotone Missing at Random Data

Author

Listed:
  • BaoLuo Sun
  • Eric J. Tchetgen Tchetgen

Abstract

The development of coherent missing data models to account for nonmonotone missing at random (MAR) data by inverse probability weighting (IPW) remains to date largely unresolved. As a consequence, IPW has essentially been restricted for use only in monotone MAR settings. We propose a class of models for nonmonotone missing data mechanisms that spans the MAR model, while allowing the underlying full data law to remain unrestricted. For parametric specifications within the proposed class, we introduce an unconstrained maximum likelihood estimator for estimating the missing data probabilities which is easily implemented using existing software. To circumvent potential convergence issues with this procedure, we also introduce a constrained Bayesian approach to estimate the missing data process which is guaranteed to yield inferences that respect all model restrictions. The efficiency of standard IPW estimation is improved by incorporating information from incomplete cases through an augmented estimating equation which is optimal within a large class of estimating equations. We investigate the finite-sample properties of the proposed estimators in extensive simulations and illustrate the new methodology in an application evaluating key correlates of preterm delivery for infants born to HIV-infected mothers in Botswana, Africa. Supplementary materials for this article are available online.

Suggested Citation

  • BaoLuo Sun & Eric J. Tchetgen Tchetgen, 2018. "On Inverse Probability Weighting for Nonmonotone Missing at Random Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 369-379, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:369-379
    DOI: 10.1080/01621459.2016.1256814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1256814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1256814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Zhao, 2022. "Diagnostic checking of multiple imputation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 271-286, June.
    2. Yang Zhao & Meng Liu, 2021. "Unified approach for regression models with nonmonotone missing at random data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 87-101, March.
    3. Soyoung Kim & Jae-Kwang Kim & Kwang Woo Ahn, 2022. "A calibrated Bayesian method for the stratified proportional hazards model with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 169-193, April.
    4. Yang Zhao, 2021. "Semiparametric model for regression analysis with nonmonotone missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 461-475, June.
    5. Yang Zhao, 2023. "Maximum likelihood estimation of missing data probability for nonmonotone missing at random data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 197-209, March.
    6. Daniel O. Scharfstein & Jon Steingrimsson & Aidan McDermott & Chenguang Wang & Souvik Ray & Aimee Campbell & Edward Nunes & Abigail Matthews, 2022. "Global sensitivity analysis of randomized trials with nonmonotone missing binary outcomes: Application to studies of substance use disorders," Biometrics, The International Biometric Society, vol. 78(2), pages 649-659, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:369-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.