IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p1-13.html
   My bibliography  Save this article

Learning Optimal Personalized Treatment Rules in Consideration of Benefit and Risk: With an Application to Treating Type 2 Diabetes Patients With Insulin Therapies

Author

Listed:
  • Yuanjia Wang
  • Haoda Fu
  • Donglin Zeng

Abstract

Individualized medical decision making is often complex due to patient treatment response heterogeneity. Pharmacotherapy may exhibit distinct efficacy and safety profiles for different patient populations. An “optimal” treatment that maximizes clinical benefit for a patient may also lead to concern of safety due to a high risk of adverse events. Thus, to guide individualized clinical decision making and deliver optimal tailored treatments, maximizing clinical benefit should be considered in the context of controlling for potential risk. In this work, we propose two approaches to identify personalized optimal treatment strategy that maximizes clinical benefit under a constraint on the average risk. We derive the theoretical optimal treatment rule under the risk constraint and draw an analogy to the Neyman–Pearson lemma to prove the theorem. We present algorithms that can be easily implemented by any off-the-shelf quadratic programming package. We conduct extensive simulation studies to show satisfactory risk control when maximizing the clinical benefit. Finally, we apply our method to a randomized trial of type 2 diabetes patients to guide optimal utilization of the first line insulin treatments based on individual patient characteristics while controlling for the rate of hypoglycemia events. We identify baseline glycated hemoglobin level, body mass index, and fasting blood glucose as three key factors among 18 biomarkers to differentiate treatment assignments, and demonstrate a successful control of the risk of hypoglycemia in both the training and testing dataset.

Suggested Citation

  • Yuanjia Wang & Haoda Fu & Donglin Zeng, 2018. "Learning Optimal Personalized Treatment Rules in Consideration of Benefit and Risk: With an Application to Treating Type 2 Diabetes Patients With Insulin Therapies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 1-13, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:1-13
    DOI: 10.1080/01621459.2017.1303386
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1303386
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1303386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying‐Qi Zhao & Michael L. LeBlanc, 2020. "Designing precision medicine trials to yield a greater population impact," Biometrics, The International Biometric Society, vol. 76(2), pages 643-653, June.
    2. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.
    3. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    4. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    5. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    6. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.