IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p521-533.html
   My bibliography  Save this article

Landmark-Constrained Elastic Shape Analysis of Planar Curves

Author

Listed:
  • Justin Strait
  • Sebastian Kurtek
  • Emily Bartha
  • Steven N. MacEachern

Abstract

Various approaches to statistical shape analysis exist in current literature. They mainly differ in the representations, metrics, and/or methods for alignment of shapes. One such approach is based on landmarks, that is, mathematically or structurally meaningful points, which ignores the remaining outline information. Elastic shape analysis, a more recent approach, attempts to fix this by using a special functional representation of the parametrically defined outline to perform shape registration, and subsequent statistical analyses. However, the lack of landmark identification can lead to unnatural alignment, particularly in biological and medical applications, where certain features are crucial to shape structure, comparison, and modeling. The main contribution of this work is the definition of a joint landmark-constrained elastic statistical shape analysis framework. We treat landmark points as constraints in the full shape analysis process. Thus, we inherit benefits of both methods: the landmarks help disambiguate shape alignment when the fully automatic elastic shape analysis framework produces unsatisfactory solutions. We provide standard statistical tools on the landmark-constrained shape space including mean and covariance calculation, classification, clustering, and tangent principal component analysis (PCA). We demonstrate the benefits of the proposed framework on complex shapes from the MPEG-7 dataset and two real data examples: mice T2 vertebrae and Hawaiian Drosophila fly wings. Supplementary materials for this article are available online.

Suggested Citation

  • Justin Strait & Sebastian Kurtek & Emily Bartha & Steven N. MacEachern, 2017. "Landmark-Constrained Elastic Shape Analysis of Planar Curves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 521-533, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:521-533
    DOI: 10.1080/01621459.2016.1236726
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1236726
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1236726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Kurtek & Anuj Srivastava & Eric Klassen & Zhaohua Ding, 2012. "Statistical Modeling of Curves Using Shapes and Related Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1152-1165, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    2. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    3. Kelvin Gu & Debdeep Pati & David B. Dunson, 2014. "Bayesian Multiscale Modeling of Closed Curves in Point Clouds," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1481-1494, December.
    4. Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    5. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    6. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    7. Irene Epifanio & Vicent Gimeno & Ximo Gual-Arnau & M. Victoria Ibáñez-Gual, 2020. "A New Geometric Metric in the Shape and Size Space of Curves in R n," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    8. Karthik Bharath & Sebastian Kurtek & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Radiologic image‐based statistical shape analysis of brain tumours," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1357-1378, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:521-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.