IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i515p1182-1195.html
   My bibliography  Save this article

Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions

Author

Listed:
  • Ning Zhang
  • Daniel W. Apley

Abstract

Gaussian process modeling, or kriging, is a popular method for modeling data from deterministic computer simulations, and the most common choices of covariance function are Gaussian, power exponential, and Matérn. A characteristic of these covariance functions is that the basis functions associated with their corresponding response predictors are localized, in the sense that they decay to zero as the input location moves away from the simulated input sites. As a result, the predictors tend to revert to the prior mean, which can result in a bumpy fitted response surface. In contrast, a fractional Brownian field model results in a predictor with basis functions that are nonlocalized and more sigmoidal in shape, although it suffers from drawbacks such as inability to represent smooth response surfaces. We propose a class of Brownian integrated covariance functions obtained by incorporating an integrator (as in the white noise integral representation of a fractional Brownian field) into any stationary covariance function. Brownian integrated covariance models result in predictor basis functions that are nonlocalized and sigmoidal, but they are capable of modeling smooth response surfaces. We discuss fundamental differences between Brownian integrated and other covariance functions, and we illustrate by comparing Brownian integrated power exponential with regular power exponential kriging models in a number of examples. Supplementary materials for this article are available online.

Suggested Citation

  • Ning Zhang & Daniel W. Apley, 2016. "Brownian Integrated Covariance Functions for Gaussian Process Modeling: Sigmoidal Versus Localized Basis Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1182-1195, July.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1182-1195
    DOI: 10.1080/01621459.2015.1077711
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1077711
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1077711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenying Huang & Ke Wang & F. Jay Breidt & Richard A. Davis, 2011. "A class of stochastic volatility models for environmental applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 32, pages 364-377, July.
    2. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Salemi & Jeremy Staum & Barry L. Nelson, 2019. "Generalized Integrated Brownian Fields for Simulation Metamodeling," Operations Research, INFORMS, vol. 67(3), pages 874-891, May.
    2. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    2. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    3. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    4. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    5. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    6. Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.
    7. Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.
    8. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    9. Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
    10. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
    11. Jing Chang & Herbert K.H. Lee, 2015. "Variable selection via a multi-stage strategy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 762-774, April.
    12. Bozağaç, Doruk & Batmaz, İnci & Oğuztüzün, Halit, 2016. "Dynamic simulation metamodeling using MARS: A case of radar simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 69-86.
    13. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    14. Maria Masotti & Lin Zhang & Ethan Leng & Gregory J. Metzger & Joseph S. Koopmeiners, 2023. "A novel Bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI," Biometrics, The International Biometric Society, vol. 79(2), pages 604-615, June.
    15. Yang, Dazhi & Gueymard, Christian A., 2019. "Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    17. Paulo, Rui & García-Donato, Gonzalo & Palomo, Jesús, 2012. "Calibration of computer models with multivariate output," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3959-3974.
    18. Kleijnen, J.P.C., 2009. "Sensitivity Analysis of Simulation Models," Discussion Paper 2009-11, Tilburg University, Center for Economic Research.
    19. Horiguchi, Akira & Pratola, Matthew T. & Santner, Thomas J., 2021. "Assessing variable activity for Bayesian regression trees," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. MacDonald, Blake & Ranjan, Pritam & Chipman, Hugh, 2015. "GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i12).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1182-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.