IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p742-759.html
   My bibliography  Save this article

Matching a Distribution by Matching Quantiles Estimation

Author

Listed:
  • Nikolaos Sgouropoulos
  • Qiwei Yao
  • Claudia Yastremiz

Abstract

Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO.

Suggested Citation

  • Nikolaos Sgouropoulos & Qiwei Yao & Claudia Yastremiz, 2015. "Matching a Distribution by Matching Quantiles Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 742-759, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:742-759
    DOI: 10.1080/01621459.2014.929522
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.929522
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.929522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacobi, Arie & Tzur, Joseph, 2021. "Wealth Distribution across Countries: Quality of Weibull, Dagum and Burr XII in Estimating Wealth over Time," Finance Research Letters, Elsevier, vol. 43(C).
    2. Qin, Shanshan & Wu, Yuehua, 2020. "General matching quantiles M-estimation," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:742-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.