IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p313-325.html
   My bibliography  Save this article

Semiparametric Relative-Risk Regression for Infectious Disease Transmission Data

Author

Listed:
  • Eben Kenah

Abstract

This article introduces semiparametric relative-risk regression models for infectious disease data. The units of analysis in these models are pairs of individuals at risk of transmission. The hazard of infectious contact from i to j consists of a baseline hazard multiplied by a relative risk function that can be a function of infectiousness covariates for i , susceptibliity covariates for j , and pairwise covariates. When who-infects-whom is observed, we derive a profile likelihood maximized over all possible baseline hazard functions that is similar to the Cox partial likelihood. When who-infects-whom is not observed, we derive an EM algorithm to maximize the profile likelihood integrated over all possible combinations of who-infected-whom. This extends the most important class of regression models in survival analysis to infectious disease epidemiology. These methods can be implemented in standard statistical software, and they will be able to address important scientific questions about emerging infectious diseases with greater clarity, flexibility, and rigor than current statistical methods allow. Supplementary materials for this article are available online.

Suggested Citation

  • Eben Kenah, 2015. "Semiparametric Relative-Risk Regression for Infectious Disease Transmission Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 313-325, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:313-325
    DOI: 10.1080/01621459.2014.896807
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.896807
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.896807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Bee Leng & Kosorok, Michael R. & Fine, Jason P., 2005. "The Profile Sampler," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 960-969, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai Xiaoxuan & Loh Wen Wei & Crawford Forrest W., 2021. "Identification of causal intervention effects under contagion," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 9-38, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica G. Young & Nicholas P. Jewell & Steven J. Samuels, 2008. "Regression Analysis of a Disease Onset Distribution Using Diagnosis Data," Biometrics, The International Biometric Society, vol. 64(1), pages 20-28, March.
    2. Cheng, Guang & Kosorok, Michael R., 2009. "The penalized profile sampler," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 345-362, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:313-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.