IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i505p173-185.html
   My bibliography  Save this article

Parametric Estimation of Ordinary Differential Equations With Orthogonality Conditions

Author

Listed:
  • Nicolas J-B. Brunel
  • Quentin Clairon
  • Florence d'Alché-Buc

Abstract

Differential equations are commonly used to model dynamical deterministic systems in applications. When statistical parameter estimation is required to calibrate theoretical models to data, classical statistical estimators are often confronted to complex and potentially ill-posed optimization problem. As a consequence, alternative estimators to classical parametric estimators are needed for obtaining reliable estimates. We propose a gradient matching approach for the estimation of parametric Ordinary Differential Equations (ODE) observed with noise. Starting from a nonparametric proxy of a true solution of the ODE, we build a parametric estimator based on a variational characterization of the solution. As a Generalized Moment Estimator, our estimator must satisfy a set of orthogonal conditions that are solved in the least squares sense. Despite the use of a nonparametric estimator, we prove the - consistency and asymptotic normality of the Orthogonal Conditions estimator. We can derive confidence sets thanks to a closed-form expression for the asymptotic variance. Finally, the OC estimator is compared to classical estimators in several (simulated and real) experiments and ODE models to show its versatility and relevance with respect to classical Gradient Matching and Nonlinear Least Squares estimators. In particular, we show on a real dataset of influenza infection that the approach gives reliable estimates. Moreover, we show that our approach can deal directly with more elaborated models such as Delay Differential Equation (DDE). Supplementary materials for this article are available online.

Suggested Citation

  • Nicolas J-B. Brunel & Quentin Clairon & Florence d'Alché-Buc, 2014. "Parametric Estimation of Ordinary Differential Equations With Orthogonality Conditions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 173-185, March.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:173-185
    DOI: 10.1080/01621459.2013.841583
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.841583
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.841583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    3. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    4. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    5. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:173-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.