IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i2p187-209.html
   My bibliography  Save this article

L-moments of the Birnbaum–Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data

Author

Listed:
  • Camilo Lillo
  • Víctor Leiva
  • Orietta Nicolis
  • Robert G. Aykroyd

Abstract

Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum–Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962–2015, is carried out. This application identifies the extreme value Birnbaum–Saunders distribution as a better model than classic extreme value distributions for describing seismic events.

Suggested Citation

  • Camilo Lillo & Víctor Leiva & Orietta Nicolis & Robert G. Aykroyd, 2018. "L-moments of the Birnbaum–Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(2), pages 187-209, January.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:2:p:187-209
    DOI: 10.1080/02664763.2016.1269729
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1269729
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1269729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Leiva & Carolina Marchant & Fabrizio Ruggeri & Helton Saulo, 2015. "A criterion for environmental assessment using Birnbaum–Saunders attribute control charts," Environmetrics, John Wiley & Sons, Ltd., vol. 26(7), pages 463-476, November.
    2. Delicado, P. & Goria, M.N., 2008. "A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1661-1673, January.
    3. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    4. Aydin Karakoca & Ulku Erisoglu & Murat Erisoglu, 2015. "A comparison of the parameter estimation methods for bimodal mixture Weibull distribution with complete data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1472-1489, July.
    5. V�ctor Leiva & Carolina Marchant & Helton Saulo & Muhammad Aslam & Fernando Rojas, 2014. "Capability indices for Birnbaum-Saunders processes applied to electronic and food industries," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1881-1902, September.
    6. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    7. Leiva, Víctor & Ruggeri, Fabrizio & Saulo, Helton & Vivanco, Juan F., 2017. "A methodology based on the Birnbaum–Saunders distribution for reliability analysis applied to nano-materials," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 192-201.
    8. Min Wang & Jing Zhao & Xiaoqian Sun & Chanseok Park, 2013. "Robust explicit estimation of the two-parameter Birnbaum--Saunders distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2259-2274, October.
    9. Carolina Marchant & Víctor Leiva & Francisco José A. Cysneiros & Juan F. Vivanco, 2016. "Diagnostics in multivariate generalized Birnbaum-Saunders regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2829-2849, November.
    10. Karvanen, Juha, 2006. "Estimation of quantile mixtures via L-moments and trimmed L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 947-959, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Habibur Rahman & Md. Moyazzem Hossain, 2022. "Distribution of Earthquake Magnitude Levels in Bangladesh," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 11(3), pages 1-15, September.
    2. Helio M. de Oliveira & Raydonal Ospina & Carlos Martin-Barreiro & Víctor Leiva & Christophe Chesneau, 2023. "On the Use of Variability Measures to Analyze Source Coding Data Based on the Shannon Entropy," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    3. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    4. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Guo & Hecheng Wu & Gaorong Li & Qiuyue Li, 2017. "Inference for the common mean of several Birnbaum–Saunders populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 941-954, April.
    2. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    3. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    4. Helton Saulo & Jeremias Leão & Víctor Leiva & Robert G. Aykroyd, 2019. "Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data," Statistical Papers, Springer, vol. 60(5), pages 1605-1629, October.
    5. Mário Fernando De Sousa & Helton Saulo & Víctor Leiva & Paulo Scalco, 2018. "On Some Properties Of A New Asymmetry-Based Tobit Model," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 129, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    6. Di Nardo, E. & Guarino, G. & Senato, D., 2008. "Symbolic computation of moments of sampling distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4909-4922, July.
    7. Carolina Marchant & Víctor Leiva & Francisco José A. Cysneiros & Juan F. Vivanco, 2016. "Diagnostics in multivariate generalized Birnbaum-Saunders regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2829-2849, November.
    8. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    9. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    10. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    11. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.
    12. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    13. Sanku Dey & Mahendra Saha & M. Z. Anis & Sudhansu S. Maiti & Sumit Kumar, 2023. "Estimation and confidence intervals of $$C_{Np}(u,v)$$ C Np ( u , v ) for logistic-exponential distribution with application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 431-446, March.
    14. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    15. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    16. Philippe Bernard & Najat El Mekkaoui De Freitas & Bertrand B. Maillet, 2022. "A financial fraud detection indicator for investors: an IDeA," Annals of Operations Research, Springer, vol. 313(2), pages 809-832, June.
    17. Muhammet Burak Kılıç & Yusuf Şahin & Melih Burak Koca, 2021. "Genetic algorithm approach with an adaptive search space based on EM algorithm in two-component mixture Weibull parameter estimation," Computational Statistics, Springer, vol. 36(2), pages 1219-1242, June.
    18. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    20. Chanseok Park & Min Wang, 2024. "Parameter Estimation of Birnbaum-Saunders Distribution under Competing Risks Using the Quantile Variant of the Expectation-Maximization Algorithm," Mathematics, MDPI, vol. 12(11), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:2:p:187-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.