IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i3p427-440.html
   My bibliography  Save this article

Spatio-temporal model for crop yield forecasting

Author

Listed:
  • Panudet Saengseedam
  • Nantachai Kantanantha

Abstract

This paper proposes a linear mixed model (LMM) with spatial effects, trend, seasonality and outliers for spatio-temporal time series data. A linear trend, dummy variables for seasonality, a binary method for outliers and a multivariate conditional autoregressive (MCAR) model for spatial effects are adopted. A Bayesian method using Gibbs sampling in Markov Chain Monte Carlo is used for parameter estimation. The proposed model is applied to forecast rice and cassava yields, a spatio-temporal data type, in Thailand. The data have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The proposed model is compared with our previous model, an LMM with MCAR, and a log transformed LMM with MCAR. We found that the proposed model is the most appropriate, using the mean absolute error criterion. It fits the data very well in both the fitting part and the validation part for both rice and cassava. Therefore, it is recommended to be a primary model for forecasting these types of spatio-temporal time series data.

Suggested Citation

  • Panudet Saengseedam & Nantachai Kantanantha, 2017. "Spatio-temporal model for crop yield forecasting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(3), pages 427-440, February.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:3:p:427-440
    DOI: 10.1080/02664763.2016.1174197
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1174197
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1174197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahman, N.M.F, 2010. "Forecasting of boro rice production in Bangladesh: An ARIMA approach," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 8.
    2. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia, Md. Shahin & Uddin, Md. Taj & Kabir, Humayun & Miah, M. A. Monayem, 2021. "Growth And Forecasting Of Badc And National Boro Seed Production In Bangladesh: An Empirical Study," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 42(2), December.
    2. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    3. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    4. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    5. Babai, M.Z. & Chen, H. & Syntetos, A.A. & Lengu, D., 2021. "A compound-Poisson Bayesian approach for spare parts inventory forecasting," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Prak, Dennis & Teunter, Ruud, 2019. "A general method for addressing forecasting uncertainty in inventory models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 224-238.
    7. Goodwin, Paul & Gönül, M. Sinan & Önkal, Dilek, 2019. "When providing optimistic and pessimistic scenarios can be detrimental to judgmental demand forecasts and production decisions," European Journal of Operational Research, Elsevier, vol. 273(3), pages 992-1004.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:3:p:427-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.