IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i11p1903-1919.html
   My bibliography  Save this article

Functional analysis of high-content high-throughput imaging data

Author

Listed:
  • Xiaoqi Jiang
  • Steven Wink
  • Bob van de Water
  • Annette Kopp-Schneider

Abstract

High-content automated imaging platforms allow the multiplexing of several targets simultaneously to generate multi-parametric single-cell data sets over extended periods of time. Typically, standard simple measures such as mean value of all cells at every time point are calculated to summarize the temporal process, resulting in loss of time dynamics of the single cells. Multiple experiments are performed but observation time points are not necessarily identical, leading to difficulties when integrating summary measures from different experiments. We used functional data analysis to analyze continuous curve data, where the temporal process of a response variable for each single cell can be described using a smooth curve. This allows analyses to be performed on continuous functions, rather than on original discrete data points. Functional regression models were applied to determine common temporal characteristics of a set of single cell curves and random effects were employed in the models to explain variation between experiments. The aim of the multiplexing approach is to simultaneously analyze the effect of a large number of compounds in comparison to control to discriminate between their mode of action. Functional principal component analysis based on T-statistic curves for pairwise comparison to control was used to study time-dependent compound effects.

Suggested Citation

  • Xiaoqi Jiang & Steven Wink & Bob van de Water & Annette Kopp-Schneider, 2017. "Functional analysis of high-content high-throughput imaging data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1903-1919, August.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:11:p:1903-1919
    DOI: 10.1080/02664763.2016.1238048
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1238048
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1238048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coffey Norma & Hinde John, 2011. "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, May.
    2. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    3. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    2. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    3. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    4. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Miguel Martínez Comesaña & Sandra Martínez Mariño & Pablo Eguía Oller & Enrique Granada Álvarez & Aitor Erkoreka González, 2020. "A Functional Data Analysis for Assessing the Impact of a Retrofitting in the Energy Performance of a Building," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    6. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    8. Jia Guo & Bu Zhou & Jianwei Chen & Jin-Ting Zhang, 2019. "An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1092-1112, December.
    9. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    10. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    13. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    14. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    15. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    16. repec:cte:wsrepe:ws1503 is not listed on IDEAS
    17. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    18. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    19. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    20. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    21. Věroslav Holuša & Michal Vaněk & Filip Beneš & Jiří Švub & Pavel Staša, 2023. "Virtual Reality as a Tool for Sustainable Training and Education of Employees in Industrial Enterprises," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    22. Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:11:p:1903-1919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.