IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i6p1088-1103.html
   My bibliography  Save this article

Functional boxplots based on epigraphs and hypographs

Author

Listed:
  • B. Martin-Barragan
  • R.E. Lillo
  • J. Romo

Abstract

Functional boxplot is an attractive technique to visualize data that come from functions. We propose an alternative to the functional boxplot based on depth measures. Our proposal generalizes the usual construction of the box-plot in one dimension related to the down-upward orderings of the data by considering two intuitive pre-orders in the functional context. These orderings are based on the epigraphs and hypographs of the data that allow a new definition of functional quartiles which is more robust to shape outliers. Simulated and real examples show that this proposal provides a convenient visualization technique with a great potential for analyzing functional data and illustrate its usefulness to detect outliers that other procedures do not detect.

Suggested Citation

  • B. Martin-Barragan & R.E. Lillo & J. Romo, 2016. "Functional boxplots based on epigraphs and hypographs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1088-1103, May.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:6:p:1088-1103
    DOI: 10.1080/02664763.2015.1092108
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1092108
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1092108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    2. Chen, Yaqing & Dawson, Matthew & Müller, Hans-Georg, 2020. "Rank dynamics for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:6:p:1088-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.